

ASIC Design of ReRAM-based AI Accelerators
Design Document

sdmay25-19

Client: Henry Duwe
Advisors: Henry Duwe & Cheng Wang

Team Members/Roles:

Sam Burns (Mixed Signal designer),
Travis Jakl (Mixed Signal Designer),

Noah Mack (Digital Signal Designer), &
Olivia Price (Analog Signal Designer)

sdmay25-19@iastate.edu

http://sdmay25-19.sd.ece.iastate.edu/

2

Executive Summary

Matrix-vector multiplication (MVM) is a fundamental operation in many computing tasks,
yet performing it in traditional systems is inefficient due to frequent data transfers between
memory and the arithmetic logic unit (ALU). One promising solution is to perform computation
in memory (e.g., ReRAM) using the memory array itself. Such computational memories are an
active area of research but have challenges associated with the analog nature of their computation.
Our project focuses on implementing a test vehicle for computational ReRAM and constituent
analog components

The key requirement for this project is to have four unique ReRAM architectures that can
be tested individually on a test chip. Two designs were inherited from past student groups, and our
team developed two additional architectures. The first design reorients the ReRAM cell structure
by aligning the word line and the source line, which may improve routing efficiency and layout
density. The second design eliminates the transistors creating a true crossbar that consists of just
memristor which could help scalability, but introduce challenges such as sneak path current.

All designs utilize the Skywater 130nm process and the components are implemented
using open-source tools including Xschem, Magic, and Ngpice. In addition to circuit and layout
design, we are developing C-code for a microcontroller to interface with each ReRAM cell,
allowing analysis testing and performance evaluation of the different architectures.

The progress made in the first semester included learning how to utilize the tools to our
given criteria, researching the ReRAM technology and how to implement it, and creating two new
unique designs to go into our research chip. By the end of the first semester, we had four distinct
ReRAM designs planned and partially implemented. We also learned how to use the tools so our
designs can be tested, fabricated, and placed on the project wrapper when they are prepared.

The second semester focused on implementing our designs using open-source tools and
thoroughly testing each to ensure proper functionality. We also developed C code to interface with
a microcontroller, enabling performance comparisons between the different ReRAM
architectures. Extensive testing was conducted, layouts were completed, and three out of the four
designs reached final layout status.

However, during the second semester an unexpected shutdown of Efabless fabrication

removed our ability to perform pre-check, tapeout check, and to submit the chip for fabrication. In
response, we shifted our focus to completing the simulation, validation, and the documentation
process. Despite this change, we met the project’s primary objectives: to create, test, and compare
four unique ReRAM architectures using an open-source workflow.

Next steps include finding a new company to fabricate our design, completing functional

verification of designs, finalizing the MCU codebase for automated MVM testing, and publishing
detailed documentation. This project demonstrates the viability of ReRAM for in-memory
computation and lays the groundwork for future research into low-power, high efficiency artificial
intelligence.

3

Learning Summary

Development Standards & Practices Used
Below is a bulleted list of our circuit and hardware design practices. Also listed is the

software that we are using to implement our designs and the engineering standards we have been
following.

Circuit Design Practices:

● Analog and digital circuit integration
● Noise management
● Timing analysis
● Simulation and validation
● Device sizing and parameter optimization

Hardware Design Practices:

● Design for fabrication
● ReRAM-specific design considerations

Software Practices:

● Xschem (circuit design software)
● Magic (layout design software)
● Ngspice (simulation software)

Engineering standards:

● IEEE 1481-2019- IEEE Standard for Integrated Circuit (IC) Open Library Architecture
(OLA): This is applicable to our project since it specifies how our integrated circuit should
be examined using a variety of design automation tools for timing and power
consumption.

● IEEE 1076.4-2000- IEEE Standard VITAL ASIC Modeling Specification: This standard is
relevant to our project because it calls for the testing of an ASIC chip using extremely
precise and effective simulation models.

● IEEE 1149.4-2010- IEEE Standard for a Mixed-Signal Test Bus: This is relevant to our
project since it will have both digital and analog components, and we will need to properly
test each one separately and in tandem.

4

● IEEE 1364-2005- IEEE Standard for Verilog Hardware Description Language: Since our
project requires us to create Verilog code to facilitate communication between the wrapper
and the analog portion, this standard is appropriate for us.

Summary of Requirements

● Four different ReRAM compute crossbar architectures must be present in the final
tape-out.

● Component circuits are individually characterizable and accessible through analog pins.
● Uncertainty evaluation on architectures being implemented; the difference between

simulated ideal crossbar current and actual within one ADC step.
● C Code for the MCU to interface with the ReRAM that enables testing and demonstrates

that the ReRAM can compute an MVM within an epsilon tolerance.
● Bring up Documentation for FORMing the ReRAM Cells and characterizing the

component circuitry via individual test benches.

Updated Summary of Requirements
We provided an updated summary of requirements due to efabless shutting down. This shows
what is not attainable after the shutdown.

● Component circuits are individually characterizable and accessible through analog pins.
● Four different ReRAM compute crossbar architectures must be present in the final top

level design and layout.
● C Code for the MCU to interface with the ReRAM that enables testing and demonstrates

that the ReRAM can compute an MVM within an epsilon tolerance.
● Bring up Documentation for FORMing the ReRAM Cells and characterizing the

component circuitry via individual test benches.

Applicable Courses from Iowa State University Curriculum

● EE 330 - Integrated Electronics
● EE 465 - Digital VLSI Design
● EE 435 - Analog VLSI Circuit Design
● EE 501 - Analog and Mixed-Signal VLSI Circuit Design Techniques
● CPR E 281 - Digital Logic
● CPR E 288 - Embedded Systems I: Introduction
● CPR E 381 - Computer Organization and Assembly Level Programming

5

New Skills/Knowledge acquired that was not taught in courses

● ReRAM technology
● Hierarchical analog design
● Compute in memory design and application
● Open-source software: Xschem, Magic, Ngspice
● Skywater 130nm process
● Tape-out process of silicon chips

6

Table of Contents
Executive Summary.. 2
Learning Summary.. 3

Development Standards & Practices Used..3
Summary of Requirements..4
Updated Summary of Requirements... 4
Applicable Courses from Iowa State University Curriculum... 4
New Skills/Knowledge acquired that was not taught in courses...5

List of Figures/Tables/Definitions...8
Figures... 8
Tables...9
Definitions... 9

1. Introduction... 10
1.1 Problem Statement.. 10
1.2 Users and User Needs..10
1.3 What is ReRAM?.. 10

2. Requirements, Constraints, and Standards.. 11
2.1 Requirements...11
2.2 Constraints...11
2.3 IEEE Standards..11
2.4 Applicable Courses From ISU Curriculum... 12

3. Project Plan..12
3.1 Project Management/Tracking Procedures..12
3.2 Task Decomposition.. 12
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria....................................13
3.4 Project Timeline/Schedule...13
3.5 Risks and Risk Management/Mitigation... 14

3.5.1 Updated Risks and Risk Management/Mitigation Post Efabless-Shutdown....................14
3.6 Personnel Effort Requirements..15
3.7 Other Resource Requirements...16

4. Design..17
4.1 Broader Context.. 17

4.1.1 Broader context.. 17
4.1.2 Prior Work/Solutions.. 18
4.1.3 Technical Complexity...19

4.2 Design Exploration..19
4.2.1 Design Decisions..19
4.2.2 Ideation...20

7

4.2.3 Decision-Making and Trade-off... 20
4.3 Proposed Design..22

4.3.1 Overview.. 22
4.3.2 Detailed Design and Visuals...22
4.3.3 Functionality...31
4.3.4 Areas of Concern and Development.. 31

4.4 Technology Considerations... 31
5. Testing... 32

5.1 Unit Testing... 32
5.2 Interface Testing.. 32
5.3 Integration Testing...33
5.4 System Testing...33
5.5 Regression Testing...33
5.6 Acceptance Testing..33
5.7 User Testing...34
5.8 Security Testing... 34
5.9 Results... 34

6. Implementation..41
6.1 Design Analysis...41

7. Ethics and Professional Responsibilities...43
7.1 Areas of Professional Responsibility/Codes of Ethics.. 44
7.2 Four Principles.. 46
7.3 Virtues... 47
7.4 Ethics and Virtue Changes Throughout the Project.. 49

8. Closing Material.. 50
8.1 Conclusions... 50
8.2 Value Provided.. 50
8.3 Next Steps..51

9. References... 51
10. Appendices.. 53

10.1 Operation Manual..53
10.2 Alternative/Initial Versions of Design...59
10.3 Other Considerations if applicable.. 59
10.4 Code...69
10.5 Team Contract... 80

8

List of Figures/Tables/Definitions
Figures
 Figure 3.1: Gantt chart, page 14
 Figure 4.1: Top level block design, page 23
 Figure 4.2: Schematic for one ReRAM crossbar architecture, page 24

Figure 4.3: Schematic for our final top level design, page 25
Figure 4.4: Architectures from SDDec38-08 and SDDec24-13 in our top level design,
page 26
Figure 4.5: Both architectures from this team in top level design, page 27
Figure 4.6: Peripheral circuitry in our top level design, page 28
Figure 4.7: Peripheral circuitry in our top level design (cont.), page 28
Figure 4.8: Architecture select MUX outputting to MCU, page 29
Figure 4.9: Our architecture one final layout, page 30

 Figure 5.1: Simulation results from inverter, pre-layout, page 34
Figure 5.2: Simulation results from inverter, post-layout, page 35
Figure 5.3: Testbench for comparing 1T1R cells using PMOS and NMOS transistors, page
35
Figure 5.4: Schematic including two 1T1R cells, one using a PMOS transistor and the
other using an NMOS transistor, page 36
Figure 5.5: Resulting waveforms from buffer testbench from team sddec23-08, page 36
Figure 5.6: Resulting waveforms from 2-to-1 multiplexer testbench from team
sddec23-08, page 37
Figure 5.7: Resulting waveforms from 4-to-1 multiplexer testbench from team
sddec23-08, page 37
Figure 5.8: Resulting waveforms from transmission gate testbench from team sddec23-08,
page 38
Figure 5.9: 1T1R testbench, page 38
Figure 5.10: Waveforms from our 1T1R testbench, page 39
Figure 5.11: Transimpedance schematics testbench, page 39
Figure 5.12: Resulting waveform for a transimpedance amplifier, page 40
Figure 5.13: Priority Encoder testbench, page 40
Figure 5.14: Resulting waveform from our priority encoder, page 40
Figure 6.1: (a) Parallel Bitline and Sourcelines. (b) True Crossbar Design (both extracted
directly from [6]), page 42
Figure 10.1: Top Level Schematic, page 53
Figure 10.2: explains ReRAM structural and operation basics and is extracted directly
from [10], page 59

9

Figure 10.3: explains ReRAM state change requirements and is extracted directly from
[5], page 59
Figure 10.4: Magic interface showing Devices 1 & 2 menu with proper vias, page 61
Figure 10.5: Layout showing correct VDD pin connections, page 62
Figure 10.6: LVS result indicating symbol issue, page 63
Figure 10.7: Klayout highlighting a DRC error at specified coordinates, page 64
Figure 10.8: LVS output indicating file path error, page 65
Figure 10.9: Commented lines within .spice file to be removed, page 66

Tables
 Table 3.1: Personnel effort requirements, page 15
 Table 4.1: Broader context, page 17
 Table 4.2: Pros/Cons of prior work/solutions, page 18
 Table 4.3: Comparing ADC architectures, page 21
 Table 4.4: Comparing ReRAM crossbar architectures, page 22
 Table 7.1: Codes of ethics, page 44

Table 7.2: Four principles, page 46
 Table 10.1: Pinout, page 55
 Table 10.2: Skill sets covered by team, page 81

Definitions
 ReRAM: Resistive Random Access Memory
 1T1R: ReRAM cell consisting of 1 transistor and 1 memristor
 ADC: Analog to Digital Converter

XSchem: Open-source schematic creation software
 Magic: Open-source layout creation software
 Ngspice: Open-source analog simulation software
 Gaw: Open-source analog waveform viewer

10

1. Introduction
1.1 Problem Statement

Matrix-vector multiplication (MVM) is one of the most common operations in machine
learning applications. Performing MVM requires many multiply and accumulate operations,
which takes a lot of time and energy in a typical CPU. Moving the required data back and forth in
between the CPU and memory consumes a lot of energy in a traditional system.
Compute-in-memory (CIM) technologies pose a potential solution to speeding up these processes
by eliminating the memory bottleneck and allowing for parallel computation. ReRAM is an
emerging, low-power, and non-volatile memory technology which may be used for CIM. Using
ReRAM for CIM may require a rethink of ReRAM architectures. First, there is significant
potential for impact from noise, both from the internal architecture of the ReRAM matrix as well
as device noise from other chip components. Second, there are limited opportunities for ReRAM
chip fabrication. For these reasons, we will design a fabricated test chip for ReRAM architecture
exploration and characterization. The test chip will include multiple distinct ReRAM
implementations in one design, resulting in a final chip that can test multiple implementations for
research purposes. Ultimately, the final design will be laid out with four distinct architectures and
a testbench for component characterization with simulation data demonstrating functionality.

1.2 Users and User Needs

The ISU ECpE faculty and their research teams (grad and undergrad) serve as the main
client(s)/user(s) for this project. Secondary users include ChipForge, an Iowa State University
club, while tertiary users encompass researchers and enthusiasts outside of our department. The
objective of our project is to create a research test chip with multiple ReRAM architectures from
past teams, in addition to our own, on the chip. In conjunction with the design of these
architectures, comprehensive documentation will be produced to guide users on tool utilization,
troubleshooting, and the design process. ISU research faculty will then use the chip to evaluate
and characterize the different ReRAM architectures. Providing a finished top-level design,
testbenches, and layout will meet the user needs. Additionally, in-depth documentation for the
theoretical bring-up and testing methodology will be necessary for the users teams to evaluate the
top level design and proposed architectures. To perform sufficient testing on each architecture, the
research teams must be able to test and characterize each component individually to verify the
functionality of system subcomponents. Along with testbench results, C code must be provided to
allow the MCU to interface with the chip, performing testing and measurements.

1.3 What is ReRAM?

ReRAM is a part of emerging nonvolatile technologies that is aiming to address the
limitations of conventional memory systems. ReRAM operates as a resistive switching, where a
voltage induces a filament to grow between two electrodes. When the resistive material creates a
filament it provides low resistance which entails a one. If the filament is broken then the
resistance is high which creates a zero. There are three distinct modes for ReRAM; forming,
writing and reading. Forming is when voltage is first applied to the cell to create the initial
oxygen filament. Writing is where the filament is changed by the application of the electric field.
Lastly, reading is where the resistance of the cell is transformed into binary data.

11

2. Requirements, Constraints, and Standards
2.1 Requirements

● Functional Requirements
○ Four different ReRAM compute crossbar architectures must be present in the final

tapeout
■ Two architectures will come from the previous two team’s final designs.

● Both read from the bit line, and the source and bit lines are parallel
in both designs.

● One utilizes a 4-bit ADC, while the other utilizes a 1-bit ADC
■ Two additional architectures will be newly designed by our team

● One will be a true crossbar design, with no transistors; a matrix of
memristors

● One will parallelize the source and word lines
○ Component circuits are individually characterizable and accessible through analog

pins, and include the following:
■ One, three, and four bit ADCs
■ Transimpedance amplifier
■ ReRAM cell(s)
■ One, three, and four bit DACs

● Resource Requirements
○ Uncertainty evaluation on architectures being implemented; difference between

simulated ideal crossbar current and actual within one ADC step
○ C Code for the MCU to interface with the ReRAM that enables testing and

demonstrates that the ReRAM can compute a MVM within an epsilon tolerance
○ Bring-up Documentation for FORMing the ReRAM Cells and characterizing the

component circuitry via individual testbenches.
2.2 Constraints

● Must use Efabless open source tools for design process
● Must use Skywater 130nm process
● Must use previous teams’ architectures in our final design
● Final layout design must fit inside project wrapper

2.3 IEEE Standards

● IEEE 1481-2019- IEEE Standard for Integrated Circuit (IC) Open Library Architecture
(OLA): This is applicable to our project since it specifies how our integrated circuit should
be examined using a variety of design automation tools for timing and power
consumption.

● IEEE 1076.4-2000- IEEE Standard VITAL ASIC Modeling Specification: This standard is
relevant to our project because it calls for the testing of an ASIC chip using extremely
precise and effective simulation models.

12

● IEEE 1149.4-2010- IEEE Standard for a Mixed-Signal Test Bus: This is relevant to our
project since it will have both digital and analog components, and we will need to properly
test each one separately and in tandem.

● IEEE 1364-2005- IEEE Standard for Verilog Hardware Description Language: Since our
project requires us to create Verilog code to facilitate communication between the wrapper
and the analog portion, this standard is appropriate for us.

2.4 Applicable Courses From ISU Curriculum

● EE 330
● ENGL 314
● EE 230
● EE 465
● EE 435
● CPR E 381
● CPR E 288

3. Project Plan
3.1 Project Management/Tracking Procedures

We plan on using the agile methodology for managing our project. Since we meet with our
advisors every week, we will do one-week sprints where we can give updates on what was
accomplished in the past week. We will use GitHub issues to track tasks on our project. We will
also be very deliberate when deciding to commit our changes, ensuring that any time we have our
project in a state that we want to save or talk about we can look at the corresponding commit.

3.2 Task Decomposition
Task 1: Figure out the tools and research ReRAM functionality

● Installing toolchain
● Demonstrate competency with tools and refine ChipForge tutorials
● Get an analog device through Pre-check

Task 2: Verify and integrate previous architectures and peripheral circuitry
● Looking at other team's components and testing if they work
● Get the other team's components through pre-check

Task 3: Research and implement new architures
● Create schematic for new architecture #1
● Create schematic for new architecture #2
● Integrate new architectures into top-level design

Task 4: Create Final Layout of Design
● Create layout of circuit component testbench
● Add each unique architecture to the layout

13

● Clear all DRC Errors from the design
● Make sure the design passes LVS

Task 5: Verify Behavior of Final Design
● Perform post extraction simulation on components
● Perform post extraction simulation on unique architectures
● Verify that simulation results match expected behavior

Task 6: Get Final Design Through Efabless Checks
● Get final design through Efabless hosted precheck
● Get final design through Efabless hosted tapeout check

Task 7: Create Bring-up Documentation and C Code
● Write bring-up documentation
● Write accompanying C code for the project

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

- All of the previous team’s modules function as expected
- Post-integration of the previous team’s modules function as expected while passing DRC

and LVS checks
- We have created our own architectures that function as expected and pass DRC and LVS

checks
- All four architectures are integrated and pass DRC, LVS, and precheck
- The component testbench has been integrated and passes DRC, LVS, and precheck

3.4 Project Timeline/Schedule

Figure 3.1: Gantt chart

14

3.5 Risks and Risk Management/Mitigation

- Past team’s design does not pass functional tests or pre-check
- Risk 40% : Past team’s design does not pass functional tests or pre-check.

Efabless tools have evolved over time, so past designs may no longer pass
verification. Models may have been updated or files may be missing. To prevent a
roadblock, we will begin by testing each component individually before integrating
any of the designs to catch any problems early on. We may need to re-layout these
components if they fail.

- At least one of the new designs does not satisfy the requirements
- Risk 15% : There is a lot of potential for noise to interfere with the functionality

of our circuits, as well as other various issues that could arise from our component
circuitry. To mitigate this, we will make sure to do our research on different design
architectures to produce a different process that our clients and end users will
benefit from.

- Integrated top-level project wrapper design fails functional tests or pre-check
- Risk 55% : Combining all of our components into one cohesive design may

provide some issues while running the final checks. To mitigate this issue, we will
make sure to run constant LVS and prechecks as we go along the integration
process.

- Flicker noise is more impactful on the Skywater process than expected
- Risk 15%: Finding the necessary values in the Skywater PDK to calculate the

corner frequency between flicker noise and thermal noise has not been successful.
In terms of simulation, there is not one agreed upon method of simulating flicker
noise. Currently, we are unsure of what method our software is using, making
simulation results more difficult to interpret. However, for most modern processes,
the effects of thermal noise in the megahertz region are much more impactful than
that of flicker noise [1]. Additionally, the impedance of the memristor will be
much greater than that of any MOS device used in an architecture, so the dominant
source of noise in these designs will be the ReRAM cells. To mitigate this potential
risk, we can increase the clock speed of our circuit to around 20MHz where
thermal noise will certainly be dominant.

3.5.1 Updated Risks and Risk Management/Mitigation Post Efabless-Shutdown
Due to Efabless shutdown we had to update a few of our risks.

- Final design is unable to be fabricated
- Risk 100%: Due to the efabless shutdown in early march, there is no possibility of

our design being fabricated at this time. Despite losing the resources from efabless
and their open-source Slack community, we are working through the project to
meet our deadlines as if this event did not occur. Working towards our original
goal is the best mitigation strategy to reach a successful outcome.

- Past team’s design does not pass functional tests or pre-check
- Risk 100% : Past team’s design does not pass functional tests or pre-check.

Efabless tools have evolved over time, so past designs no longer pass verification.

15

Two of the main reasons for this stem from tool versioning issues, and the ReRAM
SPICE file not being able to pass precheck. Models may have been updated or files
may be missing. To try and work through roadblocks, we will test each component
individually before integrating any of the designs to catch sources of error. We will
need to re-layout these components if they fail or did not have a layout to begin
with.

- Integrated top-level project wrapper design fails functional tests or pre-check
- Risk 100% : As previously mentioned, the ReRAM cell SPICE model is able to

be simulated, but is not able to pass pre-check. This was an issue we planned to
work through with the efabless employees, but after the shutdown this was no
longer an option. To mitigate this issue, we will make sure that our final design
passes both DRC and LVS checks to get as close to achieving our original goal as
possible.

3.6 Personnel Effort Requirements

 Time

Task 1: Figure out the tools and
research ReRAM functionality 70 hrs

Installing toolchain 10 hrs

Demonstrate competency with tools
and refine ChipForge tutorials 40 hrs

Get an analog device through
Pre-check 20 hrs

Task 2: Verify and integrate
previous architectures and
peripheral circuitry 120 hrs

Looking at other team's components
and testing if they work 60 hrs

Get the other team's components
through pre-check 60 hrs

Task 3: Research and implement
new architures 90 hrs

Create schematic for new architecture
#1 30 hrs

Create schematic for new architecture
#2 30 hrs

Integrate new architectures into
top-level design 30 hrs

Task 4: Create Final Layout of
Design 50 hrs

16

Create layout of circuit component
testbench 20 hrs

Add each unique architecture to the
layout 20 hrs

Clear all DRC Errors from the design 5 hrs

Make sure the design passes LVS 5 hrs

Task 5: Verify Behavior of Final
Design 80 hrs

Perform post extraction simulation on
components 20 hrs

Perform post extraction simulation on
unique architectures 30 hrs

Verify that simulation results match
expected behavior 30 hrs

Task 6: Get Final Design Through
Efabless Checks 60 hrs

Get final design through Efabless
hosted precheck 30 hrs

Get final design through efabless
hosted tapeout check 30 hrs

Task 7: Create Bring-up
Documentation and C Code 40 hrs

Write bring-up documentation 20 hrs

Write accompanying C code for the
project 20 hrs

Table 3.1: Personnel effort requirements

3.7 Other Resource Requirements

All of the CAD tools are open-source software. However, the software that will be used is
not well documented so we have to rely heavily on previous teams documentation and tutorials.
The other resources are used to create schematics and layouts and test the functionality of the
components and circuits. These resources include:

- Xschem: Schematic capture
- Magic: Layout
- Netgen: LVS
- Slack: online community for help with open source toolset

We also have access to the lab in Durham 310, which has FPGAs that we can use through
their comparch computer. We may need to design a PCB breakout board once our design is
fabricated, for which we can use ChipForge documentation. Finally, we have $9,750 for the

17

ReRAM Efabless tapeout for ChipIgnite 2504, which is provided to us by our client, Dr. Duwe,
through an NSF award.

4. Design
4.1 Broader Context
4.1.1 Broader context

The test chip is designed for the research and engineering community. This chip will
explore the next-generation of in compute memory. The communities that are being affected by
this design are data-intensive industries such as healthcare, finance, autonomous systems, and
machine learning will benefit from the reduced energy consumption associated with ReRAM
compute in memory systems. Lastly, the societal needs that our project addresses are energy
efficiencies and technological advancement which create competitiveness in the future for
technology.

Area Description Examples

Public Health,
Safety, and
Welfare

The ReRAM test chip will
demonstrate computational efficiency
potentially reducing energy
consumption of artificial intelligence
machine learning. This can benefit
communities by lowering energy
demand and associated emissions

Reducing energy consumption
would decrease greenhouse gas
emissions which will improve the
quality of the air in areas with
significant computational
infrastructure.

Global,
Cultural, and
Social

By advancing energy-efficient
technology, this project aligns with
the global efforts towards sustainable
and energy reductions, valued by
diverse and professional communities.

The project supports globe
sustainability initiatives by
reducing the carbon footprint of
computational operations.

Environmental ReRAM aims to reduce energy
consumption and create low powered
technologies compared to traditional
memory. However, the fabrication
process might use hazardous material,
so that effect is unknown.

While the energy usage during the
operation of the ReRAM
compute-in-memory systems is
reduced. The manufacturing
process of the ReRAM cells, such
as transition metal oxide, must be
evaluated to ensure sustainability.

Economic The cost of this device may be
expensive at first but it creates a more
energy efficient outcome. In the long
run it will make

Successful implementations of
ReRAM compute-in-memory
systems will create job
opportunities in low-power
hardware design and
manufacturing.

Table 4.1: Broader context

18

4.1.2 Prior Work/Solutions
 Since ReRAM is an emerging technology, especially for compute purposes, there are no
commercially available solutions on the market. We have looked closely, of course, at the
previous two senior design team’s projects for reference. In addition, the ISAAC design is an
example of an academic implementation of a ReRAM-based true machine learning accelerator.
The table below lists pros and cons of each of these designs, as well as our design.

Product Pros Cons

ISAAC ReRAM-based CNN
Accelerator [3]

● Acts as a true AI
accelerator

● Uses 1T1R grid for
more precise
memristor writes

● Shared ADC allows
for better precision

● Shared ADC requires
sample and hold
circuits

● Very specialized to
one application, not as
general for research

Design made by sddec23-08 ● Uses 1T1R grid for
more precise
memristor writes

● Multiple ADCs; one
for each read line

● Multiple ADCs = less
precision (1 bit)

● Only includes one
ReRAM architecture

Design made by sddec24-13 ● Uses 1T1R grid for
more precise
memristor writes

● Shared ADC allows
for better precision

● Shared ADC requires
sample and hold
circuits

● Only includes one
ReRAM architecture

Our design ● Includes four
individually accessible
unique ReRAM
architectures

● Includes individually
characterizable
component circuitry

● Generalized for
research purposes

● Research-focused,
unlikely to be useful
in a true machine
learning context

● Could suffer from
over-complication
since it includes many
different designs

Table 4.2: Pros/Cons of prior work/solutions

19

4.1.3 Technical Complexity
Our design presents a variety of technical challenges:

1. Since we are using open source software, none of our team members are familiar with the
tools we are using. This provides a barrier of entry to getting started with our actual
design.

2. ReRAM is an emerging technology, and there are very few opportunities available for
fabrication of ReRAM chips. Also, there is little information about ReRAM usage for
compute-in-memory applications, so we are exploring a new frontier.

3. We are including four different ReRAM architectures in our design, which of course
increases the complexity of our design. However, this will likely help us down the line: if
we find that one of our architectures doesn’t work as intended, there are still three others
to test.

4. We are also integrating a number of components acting as the peripheral circuitry of the
design. This includes S&H circuits, TIAs, DACs, and ADCs. While our team doesn’t have
direct experience with each of these components, they are very well studied in academia
and in industry, so finding documentation about them shouldn’t be a struggle.

4.2 Design Exploration
4.2.1 Design Decisions

1. New ReRAM Architectures
 The first design decision we had to make was what kinds of crossbars we would use in our
unique ReRAM architectures. For our first crossbar, we decided to do a similar 1T1R matrix as
the two senior design teams that came before us, but ours would be different by parallelizing the
bitlines and sourcelines in our layout. The previous two teams had their sourcelines parallel to
their wordlines. We decided to change things up with our second crossbar design and explore a
true ReRAM crossbar, which uses no transistors and only uses a matrix on ReRAM cells. We felt
that this would offer a unique solution that maximizes density within our crossbar. The operations
on this crossbar are more difficult and noise-prone, but the potential for high-density ReRAM
computation could be worth the risk.

2. ADC Resolution
 We had a few options for ADC resolution in our project. We could use the 1-bit ADC from
team sddec23-08, the 4-bit ADC from team sddec24-13, or design our own new ADC at a
different resolution. We were partly swayed in our decision due to verification difficulties with the
4-bit ADC (seemingly due to differences in our tool installations), but we ended up using the 1-bit
ADC in our design. The advantage to this decision is that each bitline has its own ADC, so there
is no need for additional circuitry for sharing a single ADC among each line. This simplistic
nature should work well for a research chip that is more for proving the concept than getting
precise results.

20

3. Multiplexing Outputs
The next major design decision came when integrating all of our designs and our

component testbench into our top level schematic. The user needs a way to choose which
architecture to get output from, since there are not enough pins in the Caravel wrapper to connect
to all of our architectures and component circuit testbenches. So, we designed a multiplexing
circuit that takes in two select lines for choosing between our four architectures, as well as an
additional select line for choosing whether the output should come from the architectures or the
component testbench. The user can then change the values of these select lines depending on their
desired output. The logic analyzer output will always be from one of our crossbar architectures or
the component testbench.

4.2.2 Ideation

One of the key uncertainties in our design process is whether we will be able to achieve
precise and accurate data retrieval from the output line. Currently, we are still in the process of
determining the length of the interconnects and assessing the level of noise that must be
accounted for when acquiring data from the output. This is why the selection of an appropriately
designed Analog-to-Digital Converter (ADC) is critical to the success of the project. The ADC
choice will not only determine whether the project is feasible but will also play a crucial role in
ensuring the functionality and scalability of the system in the broader context of the project. This
includes the goal of enhancing the performance of AI accelerators by reducing power
consumption and improving processing speed.

Additionally, we are reviewing the designs developed by our previous team, with the
possibility of incorporating elements of their architecture into our own designs. Their work
includes the use of a 4-bit Flash ADC and a Sample-and-Hold (S&H) ADC, both of which
provide useful insights and potential integration points for our architectures. Below are five
potential ADC design approaches that we are considering in our two architectures.

● Current_Mode ADC

● 4-bit Flash ADC

● 1-bit S&H ADC

● Delta Sigma ADC

● Pipeline ADC

4.2.3 Decision-Making and Trade-off
Below is a table that weighs the benefits and drawbacks of each ADC design. With the use

of this table and previous designs, we will choose whether we want to implement a new ADC
within our designs that differentiates from the previous teams or utilize one of theirs.

21

Architecture Type Pros Cons

Current-Mode ADC It can handle small variations
in current levels and use low
power consumption.

Susceptible to small amounts
of noise and low resolution
compared to other ADC
designs.

4-bit Flash ADC Fast conversions as well as
simplicity in design with ideal
parallel processing.

High power consumption as
well as large area and
susceptible to noise
environments.

1-bit sample and hold ADC Extremely fast conversions,
extremely low power
consumption, and simplicity
in design.

Only limited to binary
decision-making, not suitable
for high precision
applications, and sensitive to
noise.

Delta Sigma ADC Very high resolution with
exceptional precision and
accuracy. Great noise
reduction.

Very slow and has higher
power consumption compared
to other ADC designs.

Pipeline ADC High speed with fast
conversion rates, making it
useful for high-speed
applications.

More complex than other
ADC designs and has high
power consumption. It may
lack high resolution based on
the application.

Table 4.3: Comparing ADC architectures

 We also needed to explore pros and cons for different ReRAM crossbar architectures.
Below is a table to visualize the positives and negatives of each design.

Crossbar Type Pros Cons

1T1R grid, parallel word and
source lines

Transistors make it easier to
select individual cells for
operations

Less dense

1T1R grid, parallel bit and
source lines

Transistors make it easier to
select individual cells for
operations, also able to test an
additional layout for noise

Less dense, need to create and
verify an entirely new layout

True crossbar Higher density More overhead for operations

Table 4.4: Comparing ReRAM crossbar architectures

22

4.3 Proposed Design
4.3.1 Overview

Our design aims to characterize four unique matrix-vector multiplication modules that
utilize ReRAM for performing compute-in-memory operations. These modules will consist of
component circuitry, the first of which is the ReRAM crossbar itself. The ReRAM crossbar is a
matrix of ReRAM cells where the actual computation will take place. Another component circuit
is the trans-impedance amplifier (TIA), which will convert currents into voltages which will
represent the result of the operation. The final major component circuit is the ADC, which will
convert our analog result into a digital value readable by the CPU. Each component circuit will be
individually characterizable as part of our design as well.

4.3.2 Detailed Design and Visuals

The goal of this design is to combine four different ReRAM crossbar architectures into
one top-level block design. These will all be connected to the microcontroller via Logic Analyzer
Pins, which are responsible for communication between the microcontroller and the ReRAM
crossbar systems, such as reading values from the current crossbar or sending values to it. Two of
the ReRAM crossbars will be sourced from the previous teams' designs, while the other two will
be original designs. The original designs should closely resemble the previous designs, with
minor architectural changes, such as swapping the directions of the source and bit lines. The
top-level design should also include separate, individually characterizable testbenches for the
different types of peripheral circuitry, including the ADC, DAC, and TIA. The top-level diagram
outlines the design, while a lower diagram presents a potential internal design for a ReRAM
crossbar. The ReRAM crossbar consists of a matrix of ReRAM cells connected by lines called bit
lines, source lines, and word lines. The matrix is preloaded with values by setting the
conductances of each memristor in the matrix, and input values are sent into the matrix via either
the bit line or the source line, depending on the specific architecture. The previous teams' designs
should be used in depth as references when designing the new architectures.

23

Figure 4.1: Top level block design

24

Figure 4.2: Schematic for one ReRAM crossbar architecture

25

Figure 4.3: Schematic for our final top level design

 Our top level schematic matches up well with our original vision that we created in our
block diagram. It consists of our four architectures and our component/peripheral circuitry
testbench area, all connected to a multiplexer that determines our final output.

26

Figure 4.4: Architectures from SDDec38-08 and SDDec24-13 in our top level design

 Two of our four unique architectures were designed by the previous two teams. They both
used the same crossbar architecture, but their designs differed in peripheral circuitry. Team
sddec23-08 used a 1-bit ADC, while one of sddec24-13’s major contributions was a 4-bit ADC.
Due to this difference, the design with the 4-bit ADC shared a single ADC among each bitline,
while the other design had individual ADCs for each bitline.

27

Figure 4.5: Both architectures from this team in top level design

 Our other two architectures are the ones we contributed, which use the same peripheral
circuitry as sddec23-08. Our first architecture has a similar 1T1R grid crossbar, but we chose to
layout the crossbar such that the sourcelines were parallel to the bitlines rather than the wordlines.
We hoped that this would offer the opportunity to analyze and compare the effects of noise
between the two layouts. Our second architecture uses a true crossbar design, which is just a grid
of memristors. Since testing and verification took the bulk of the time spent on this project, we
went with the same peripheral circuitry for consistency – this made the selection between
different architectures much less complicated.

28

Figure 4.6: Peripheral circuitry in our top level design

Figure 4.7: Peripheral circuitry in our top level design (cont.)

29

 Our peripheral circuitry area consists of individually accessible versions of each
component circuit in our architectures. This includes the various sizes of crossbars, simple circuits
like multiplexers and inverters, and peripheral circuits such as ADCs and TIAs.

Figure 4.8: Architecture select MUX outputting to MCU

 Our selection circuit took in data from each of our architectures as well as our component
circuits, and used three select bits to give the user freedom to choose where they want to take
output from.

This circuit will allow us to interface with the MCU (designed by efabless), enabling us to test
and characterize the components and architectures we have spent the year designing. Notes on
how to use this circuit will be included in our bring-up documentation for future users. The
documentation will also help minimize the risk that any chips/ReRAM cells get damaged in the
bring-up and testing process.

30

Figure 4.9: Our architecture one final layout

31

4.3.3 Functionality

Once fabricated, our chip will act as a daughter board that can be connected to a
microcontroller. The microcontroller will perform FORMing operations to set up the ReRAM
cells for computation. The microcontroller will also be able to send and receive data from each
architecture on the chip, in addition to the peripheral circuitry testbench. During read/write
operations to the chip, the microcontroller will be able to perform multiply and accumulate
operations on each architecture. This data, in combination with characterizations performed in the
peripheral circuitry testbench will allow the users to characterize the components and also get a
better understanding of which ReRAM architectures are better suited for compute in memory
workloads.

4.3.4 Areas of Concern and Development

Our design plan currently meets our user requirements by containing four unique ReRAM
crossbar architectures and individually characterizable component circuitry. Our biggest concern
moving forward with our design will be about the feasibility of our ReRAM crossbar architecture
designs. As we complete simulations, we may find that certain configurations of ReRAM cells
don’t effectively carry out the operations necessary for our design to meet requirements. If this is
the case, we will need to either change the configuration of the faulty architecture or come to a
conclusion backed by concrete evidence that four unique adequate architectures do not exist.

4.4 Technology Considerations
Our design presents a variety of technical challenges:

1. Since we are using open source software, none of our team members are familiar with the
tools we are using. This provides a barrier of entry to getting started with our actual
design.

2. ReRAM is an emerging technology, and there are very few opportunities available for
fabrication of ReRAM chips. Also, there is little information about ReRAM usage for
compute-in-memory applications, so we are exploring a new frontier.

3. We are including four different ReRAM architectures in our design, which of course
increases the complexity of our design. However, this will likely help us down the line: if
we find that one of our architectures doesn’t work as intended, there are still three others
to test.

4. We are also integrating a number of components acting as the peripheral circuitry of the
design. This includes S&H circuits, TIAs, DACs, and ADCs. While our team doesn’t have
direct experience with each of these components, they are very well studied in academia
and in industry, so finding documentation about them shouldn’t be a struggle.

32

5. Testing
 The nature of our project requires rigorous testing, as there are many different components
that all must work separately and also must be integrated together in order to reach our final
product. Each component circuit, whether inherited from previous group’s designs or newly
designed by our group, must have an individual testbench that works as expected. In addition,
these components must remain functional when integrated together. To ensure that there are no
unexpected issues, our team’s testing philosophy will be to continuously test and integrate new
components and run our design through pre-check each time we make changes. This ensures that
we never add too many features at one time, so that if issues arise we can solve them swiftly by
identifying the most recent change.

5.1 Unit Testing
 The individual components of every circuit must be tested. For each component, we
created a schematic testbench using XSchem which was used to simulate the behavior of our
circuit and compare it to the theoretical behavior. The testbenches can also be used for post-layout
simulations which were carried out for each component in Magic. In the layout tool Magic,
parasitics such as unintended capacitance can be introduced during simulation due to layers being
placed too closely together in the layout. These parasitic effects are especially relevant in
post-layout analysis. Magic also includes tools for extracting SPICE netlists from our layouts.
Whether simulating pre-layout or post-layout, we used Ngspice to carry out our simulations and
Gaw and built in graphs in XSchem for viewing out resulting waveforms. Additionally, for the
ReRAM computer architectures, each individual component required thorough testing.
Furthermore, the components that we have created also have testbenches. All of the individual
testbenches were included in our final top-level design to enable post-tapeout simulation of our
component circuitry.

5.2 Interface Testing

Our design includes two primary interfaces: one that connects the individual components
within our four ReRAM architectures, and another that links all of our individual analog
components to the on-chip RISC-V processor. Within our ReRAM architectures, we connected
our components to the appropriate lines in our crossbar, which is dependent on our unique
architectures. This was tested iteratively to ensure accuracy. Using XSchem for testbenches,
Magic for layouts, Ngspice for simulations and Gaw/built in graphs for viewing waveforms.
Component circuits were gradually integrated, one at a time, and tested at each step to ensure
proper functionality as the design progressed. Using this strategy, we will be able to determine
what component is acting out of accordance with our expectations and make adjustments to our
design as needed. For the interface between our circuity and the processor, we integrated our full
design into the Efabless-provided analog wrapper. This crucial step establishes the necessary
connections to the logic analyzer pins, which creates an efficient communication with the
processor for system analysis and verification

33

5.3 Integration Testing
 The most critical integration path in our design was the integration of our analog circuitry
into the provided analog wrapper that allows communication between the RISC-V processor and
our circuitry through logic analyzer pins. As per the project requirements, our four ReRAM
architectures must be accessible via logic analyzer pins, as well as individual component
testbenches for characterization and testing purposes. To validate this integration, we first tested
our high-level analog circuitry as a complete unit to ensure that it is working properly using the
same methods mentioned in the above sections. Once these tests simulated properly, we
proceeded with the integration of the high-level analog circuitry into the analog wrapper. This
step entailed establishing connections between the appropriate logic analyzer pins and the inputs
and outputs of our circuit.

5.4 System Testing

Following the completion of our circuit and its integration within the analog wrapper, the
next stage involved the establishment of test cases to evaluate the functionality of our design. C
code was developed to implement the multiplication function across each of our four ReRAM
architectures. This code served to validate the processor’s capacity to effectively dispatch these
computational tasks to our analog circuitry and to receive the resultant output. Furthermore, C
code was also generated for the purpose of testing the discrete component circuit. The utilization
of these C programs facilitated a comprehensive assessment of the entire system, encompassing a
detailed examination of the interface mediating communication between processor and our analog
circuitry.

5.5 Regression Testing

For this project, regression testing is critical for a smooth reliable development process.
The strategy for a successful regression testing involves the systematic re-execution of previously
successful test cases following any modifications or additions to the design. The primary
objective is to verify that new changes do not interfere negatively with the functionality of our
design particularly within the analog circuitry and its interface with the RISC-V processor. This
will include re-running tests for ReRAM architecture operations, processor-circuitry
communication, and individual component behavior. Furthermore, targeted tests were created to
address potential negative setbacks on the specific nature of design changes, with the goal of
maintaining the integrity of the system’s functionality through the development lifecycle.

5.6 Acceptance Testing
 Acceptance testing is crucial in the testing process that determines whether our design
meets the requirements and has the components to be successful. This includes four ReRAM
architectures with accompanying component circuitry, as well as individually characterizable
component circuit testbenches. If these were present in the design, then we moved on to the
second acceptance criterion, which is that our design must pass the Efabless-provided pre-check
and tapeout check on the Efabless servers by the tapeout date, April 21st, 2025. If our design
passes all checks and contains all required components, it will be acceptable.

34

5.7 User Testing

User testing is a vital part of the design process and since this project is intended to be
fabricated in the future, we made sure to follow the criteria and unexpected changes the client and
the advisor brought forth. We also had weekly meetings to ensure we were on task and if we ran
into a problem, that it was addressed in accordance with their desires. Although there was no
direct user interaction with our design, users were kept informed and aligned with the design
decisions throughout the process.

5.8 Security Testing
 Security testing is not applicable to our design.

5.9 Results

During the entirety of this project, we focused on gaining familiarity with the open-source
tools, simulating and building components, and laying out the final designs in Xschem and Magic.
This process entailed taking a component through all of the steps: building in Xschem, simulating
in Xschem, creating the layout in Magic, performing post-layout simulations, running DRC and
LVS checks, and completing pre-check and tapeout checks. However, we only managed to get
one component through Efabless pre-check and tapeout before Efabless lost its funding. After the
criteria were updated for the project, we continued to follow the steps outlined above, but without
performing the pre-check or tapeout check, as those processes rely on Efabless servers. Presented
below are some of the simulation results, schematics, and layouts of components that were built
from prior team’s, and our team.

Figure 5.1: Simulation results from inverter, pre-layout

35

Figure 5.2: Simulation results from inverter, post-layout

 When exploring potential design decisions for our unique architectures, we considered the
idea of using PMOS transistors instead of NMOS transistors. The previous two design teams both
used NMOS transistors. In order to explore this idea further, we designed a testbench which
compared two ReRAM cells, one using a PMOS transistor and the other using an NMOS
transistor. The poor results of this test, along with our own research and assistance from faculty
advisors, caused us to shift our focus to other potential design decisions. Despite the suboptimal
results, this was still a design decision worth discussing.

Figure 5.3: Testbench for comparing 1T1R cells using PMOS and NMOS transistors

36

Figure 5.4: Schematic including two 1T1R cells, one using a PMOS transistor and the other using

an NMOS transistor

 We have many testing results from the sddec23-08 design team’s testbenches. Testing
these components helped us gain more familiarity with Ngspice and Gaw waveform viewer. It
also gave us an opportunity to see what components from the previous team we could utilize in
our design, what components we could modify to fit our design, and what components we may
need to revamp for our use.

Figure 5.5: Resulting waveforms from buffer testbench from team sddec23-08

37

Figure 5.6: Resulting waveforms from 2-to-1 multiplexer testbench from team sddec23-08

Figure 5.7: Resulting waveforms from 4-to-1 multiplexer testbench from team sddec23-08

38

Figure 5.8: Resulting waveforms from transmission gate testbench from team sddec23-08

The schematic below shows our work to test and characterize a pre-layout 1T1R cell in

xschem. Since moving away from the idea of using a cell with a PMOS device, the testbench
below only includes a NMOS device for testing purposes. In order to read the value of the
ReRAM, the MOS device is kept in the triode region. Seen on Vsource component (V2) the input
signal is a ramp function that increases from 0V to 2.5V and then decreases from 2.5V to -2.5V
before finally settling back at zero. This input signal should demonstrate the SET and RESET
states of the device. We measure the state of the device by observing drain-source voltage and
drain current of the transistor while comparing them to the input waveform.

Figure 5.9: 1T1R testbench

39

The waveforms below represent the successful SET and RESET operations of the ReRAM

cell in the testbench above. The ReRAM cell enters the SET state as i(vreram) begins to peak.
When ReRAM enters the SET state, it transitions to a high conductance material, which we can
see in increase in current conducted through the transistor. In order to transition the ReRAM cell
to the RESET state, a negative potential needs to be applied across the cell. As the negative
potential is applied, the ReRAM cell will transition back to the low conductance state. We can see
this transition to the RESET state in the waveform below around 600ns where the current drops to
near zero when a sufficient negative potential is applied across the cell.

Figure 5.10: Waveforms from our 1T1R testbench

Figure 5.11: Transimpedance schematics testbench

40

Figure 5.12: Resulting waveform for a transimpedance amplifier

Figure 5.13: Priority Encoder testbench

Figure 5.14: Resulting waveform from our priority encoder

41

6. Implementation
Over the course of the year, our implementation process focused on testing and verifying

inherited components from previous teams in parallel with integrating newly designed elements.
Key achievements include developing unit testbenches for individual components (e.g., op-amps,
muxes, and transmission gates), verifying their behavior using simulation tools such as Ngspice
and then laying out components and performing post layout simulation. We have created a top
level design where we are able to write and read values to each of the 4 architectures in use in our
design. Our design also allows for individual characterization of components through the use of
our peripheral circuitry testbench. We also completed the layout of one of our unique
architectures, with the designs passing DRC and LVS checks.

However, some of our original goals were not met. Firstly, we were not able to meet the

tapeout date with our final design. We were not able to meet this goal for several reasons, first and
foremost was the shutdown of efabless in early march. With this shutdown we lost access to the
hosted checks that allowed us to run the precheck and tapeout-check jobs that informed us on
whether our design was able to be fabricated. We were able to make partial progress on this goal,
as we were able to get one of our components through tapeout-check before, as part of learning
how their hosted check process worked, before the servers were shut down. Secondly, with the
efabless shutdown we lost the support we had paid for to help with ReRAM related issues. One
reason we were not able to complete the precheck of our final design was a persistent issue with
the ReRAM SPICE model. The model can be simulated and passes DRC & LVS, however fails
precheck. Without the support of efabless, the issue could not be resolved. One additional struggle
we faced was differences in tooling between our current team and past teams. These issues
required us to remake many of their testbenches, as the tools they used for simulation did not
work with our version of the toolflow.

Despite these challenges, we continued on with the project to try and meet our original

goal as best as possible. In the end we were able to deliver a top level design with all 4
architectures and a component testbench, a layout of one of our unique architectures, got a mux
through tapeout check, and also demonstrated simulation results of our crossbar.

6.1 Design Analysis
In the fall we conducted comparative analysis on PMOS- and NMOS-based ReRAM cells

using a custom testbench. The results of this analysis informed the selection of transistor types for
new architectures shall remain NMOS, as mentioned in section 5.8.

Visual representations, including testbench schematics and simulation results, have been
instrumental in guiding the implementation process. Key visuals include schematics comparing
PMOS and NMOS testing, pre-layout and post-layout simulation results for constructed circuits,
and waveform outputs from inherited designs like buffers and multiplexers. These efforts build
upon previous work while ensuring robust and reliable implementation of new designs.
 We have implemented two new ReRAM architectures. One will parallelize the source and
bit lines. The design for this architecture can be seen in Figure 6.1 [6]. In this design, the source
and bit lines are arranged in parallel, which simplifies the routing of signals. This setup can

42

improve signal uniformity and reduce power loss caused by electrical resistance. However,
placing the lines so close together increases the risk of coupling noise, where signals from one
line interfere with another. The goal of this design is to explore how noise can be managed in such
a configuration while seeing if the benefits of simpler routing outweigh the drawbacks.

The other architecture will be a true crossbar design with no transistors, essentially being a
matrix of memristors. The design for this architecture can be seen in Figure 6b [6]. This design
removes transistors entirely, leaving only a matrix of interconnected ReRAM cells. Without
transistors, the cells lack isolation during read and write operations, meaning all cells are
connected at once. This can lead to issues like leakage currents, which waste power, and signal
interference, where neighboring cells affect accuracy. On the other hand, removing transistors has
key advantages. It makes each cell much smaller, maximizing the use of space. This also reduces
manufacturing complexity and cost. Additionally, the fully connected structure is excellent for
handling many calculations at the same time, which is perfect for compute-in-memory tasks. By
testing this design, we hope to find ways to overcome its challenges while taking advantage of its
simplicity and efficiency.

(a) (b)

Figure 6.1: (a) Parallel Bitline and Sourcelines. (b) True Crossbar Design (both extracted directly
from [6])

In the second semester, we focused heavily on verifying and updating components
inherited from previous teams. Each standard cell was fully tested using a combination of
simulation and physical verification tools, ensuring compatibility with the updated toolchain and
compliance with Efabless fabrication standards. Several components required updates to function
correctly, and while we were successful in verifying most of them, the 4-bit ADC from the
previous team could not be simulated reliably. As a result, we incorporated the ADC developed
by team sddec23-08 into our own designs. In parallel, we developed our two new ReRAM
architecture schematics in Xschem and began integrating them into our system. During this

43

period, we also gained experience with the Efabless hosted precheck and tapeout-check processes.
These efforts culminated in getting our inverter, transmission gate, and 2-1 multiplexer through
hosted tapeout verification—providing a solid foundation for the broader system-level integration.

We also completed the schematic creation of our two custom architectures in Xschem.
These were integrated into two corresponding top-level designs, which include the new
architectures, two inherited architectures from previous teams, and a comprehensive peripheral
testbench. These individual top-level designs were then unified into a full-chip top-level design
that routes outputs from all four architectures and peripheral logic into a final output multiplexer.
This mux enables user-selectable output routing to the microcontroller unit (MCU) interface,
providing flexibility for testing and deployment.

In preparation for a future tapeout, we finalized the layout for one of our new
architectures. This layout was verified using DRC and LVS tools. Although the full design could
not be submitted due to the Efabless server shutdown in March, we successfully pushed multiple
components (e.g., muxes, transmission gate, inverter) through a hosted tapeout check before
access was lost. This confirmed that our toolflow and design methodology were compliant with
Efabless standards and ready to be fabricated.

Additionally, we completed bring-up firmware for the MCU. This code is designed to
initialize the chip and manage data routing once the chip is fabricated and deployed. The bring-up
code supports architecture selection and data communication between the MCU and peripheral
logic. It also provides intuitive pin definitions and flexible library functions for writing and
reading logic analyzer pins. An example main program is also provided for users to see how the
code might look in action.

However, several original goals were not met. The team was unable to meet the tapeout
deadline due to the Efabless shutdown. This shutdown blocked access to the hosted precheck and
tapeout-check tools necessary for final submission. Although one component was successfully
pushed through precheck before the shutdown, our full design encountered a persistent issue with
the ReRAM SPICE model. While the model simulates and passes DRC/LVS, it fails a specific
step of precheck that remains unresolved due to the discontinued support services from Efabless.
Tooling inconsistencies between past and present teams also posed difficulties; simulation
environments used in prior work were incompatible with our updated toolchain, requiring the
team to rebuild many of the inherited testbenches.
 Despite these challenges, we delivered a complete top-level design featuring all four
ReRAM architectures, a functioning component testbench, and layout verification of one new
architecture.

7. Ethics and Professional Responsibilities
Engineering ethics means following guidelines that are in the best interests of the client,

the public, and the engineering profession. Adhering to these guidelines, this team seeks to ensure
that the ReRAM-based architectures reduce energy consumption and improve computational
efficiency for extensive tasks like machine learning. During the process, we are being mindful of
being honest and transparent, and being accountable and responsible. Accessing the capabilities,
risks, and limitations of ReRAM and providing documentation and testing results will provide the
client with accurate data to make an honest decision about their product. Regarding the
complexity and uniqueness of ReRAM, we will be proactive in addressing errors that arise during

44

the project, and if we uncover any flaws in the ReRAM architecture, we will work quickly to
correct them.

Professional responsibilities mean being held up to specific standards and duties that
engineers have to their profession, colleagues, and the public. Thus, our project must amplify the
integrity of research, collaboration of knowledge, and advocacy for fair and equitable access. We
must ensure that the test chip is capable of producing valid results, which includes rigorous
testing, validation, and documentation of our findings, which will help with the future
development of the chip. As we explore and test ReRAM architectures, we must consider the
long-term implications of this technology and aim to ensure that the benefits of our ReRAM
findings will be accessible for further innovations and diverse industries.

7.1 Areas of Professional Responsibility/Codes of Ethics
The chosen code of ethics for the table below is the IEEE.

Area of
Responsibility

Definition Relevant Items from
the Code of Ethics

Team Interaction
with the Code

Work Competence The ability of an engineer
to perform their job when
faced with challenges
ensures that they are
qualified by enhancing or
maintaining their technical
skills.

“To maintain and improve
our technical competence
and to undertake
technological tasks for
others only if qualified by
training or experience, or
after full disclosure of
pertinent limitations.”

Our team has actively
sought knowledge through
research papers, external
consultations, and expert
feedback from the
open-source company. To
stay up to date, we review
current literature and
continue to ask experts.

Financial
Responsibility

Refers to the ethical
obligation of engineers to
manage financial
resources wisely,
transparently, and with
integrity

“To avoid unlawful
conduct in professional
activities, and to reject
bribery in all its forms.”

Most of our tools are
open-sourced. However,
we have a tape-out date in
April to produce one
hundred chips for ten
thousand dollars. We need
to use our time
responsibly in order to
have a working and cost
effective design.

Communication
Honesty

Engineers should provide
truthful and accurate
information to avoid any
misleading claims.

“To seek, accept, and
offer honest criticism of
technical work, to
acknowledge and correct
errors.”

We maintain transparency
when we encounter both
successes and challenges
we face. Any design
changes are also openly
discussed.

Health, Safety,
Well-Being

Engineers will ensure the
health, safety, and
well-being of the public
when creating designs and

“To hold paramount the
safety, health, and welfare
of the public, to protect
the privacy of others, and

Our team runs regular risk
assessments that may pose
any safety hazards,
especially with concerns

45

performing their work. to disclose promptly
factors that might
endanger the public or the
environment.”

about overheating and
ReRAM material
production.

Property Ownership The ethical responsibility
of engineers is to respect
the intellectual property
rights of others, including
patents, copyrights,
trademarks, and trade
secrets.

“To be honest and
realistic in stating claims
or estimates based on
available data, and to
credit the contributions of
others properly.”

We foster a collaborative
environment where any
ideas are welcome and
given credit.

Sustainability Engineers should strive
for environmentally
friendly and stable designs
that can be used in the
long term.

“To strive to comply with
ethical design and
sustainable development
practices.”

By using ReRAM cells,
we are decreasing the
power consumption from
the memory to the
arithmetic logic unit back
to the memory.

Social Responsibility Engineers should create
products and services that
contribute to the
well-being of the
community and society,
not to their own greed.

“To improve the
understanding by
individuals and society of
the capabilities and
societal implications of
conventional and
emerging technologies,
including intelligent
systems.”

With the emerging
ReRAM technology, we
are also creating tutorials,
and documentation that
will help future innovators
and the public to use for
their own ideas and sound
minds.

Table 7.1: Codes of ethics

To further contribute to the table above, the professional responsibility that we perform
well in is work competence. Knowing little to no knowledge about the emerging ReRAM-based
technology, we had to find research papers that were based on the infamous ReRAM cells and
how to compute in memory matrix-vector multiplication. We have also consulted experts in
various fields for noise minimization, very large circuit integration (VLSI), and tool usage.

One area of professional responsibility that requires improvement is financial
responsibility. As previously mentioned in the table, we have a tape-out deadline in April,
meaning that all our designs, schematics, layouts, and wrappers must be completed by then. The
client is relying on our design to produce one hundred chips, each costing one hundred dollars, so
our project must undergo rigorous testing through open-source software to ensure the design
functions as intended. We have faced challenges in creating a design that is distinct from previous
teams’ work. However, given the tight deadline and the significant financial investment involved,
it is crucial that we choose a solid design that can be completed successfully within the available
time frame. To achieve this, we need to better allocate time in our schedules for teamwork,
bringing both efficiency and quality to our efforts to ensure financial responsibility for the
project’s outcome.

46

7.2 Four Principles
Below is a table that breaks down the four principles versus the broader context considerations.

 Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public Health,
Safety, and
Welfare

Ensuring the
ReRAM-based
architectures do not
cause harm to the
public through
rigorous testing to
ensure reliability.

Make sure the chip
is designed to be
electrically safe and
will not overheat
due to energy
inefficiencies.

Empowering users
to make an informed
decision about
whether they choose
to use the product or
not through
documentation and
tutorials.

Allowing all
individuals to access
this project and
research through the
use of the internet
and documentation
we have provided.

Global,
Cultural, and
Social

We have designed
the tutorials and
documentation to
ensure that all
classes through
college can use and
learn from our
experiences.

The designs and
practices through
making these chips
will not harm the
users.

The design does not
affect anything
related to religion or
culture.

Having the
documentation
presented online
ensures that all
social, cultural, and
global communities
will have fair access
to this technology

Environmental Developed to
decrease energy
consumption and
reduce the
environmental
footprint and waste.

The production of
one hundred chips
will inevitably have
an environmental
impact due to the
manufacturing
process. However,
in the long term,
ReRAM technology
is expected to
contribute to smaller
chip sizes and a
reduction in energy
consumption.

Our design,
compared to other
chips that are
manufactured, will
create an
eco-friendly design
due to reduced
power consumption.

If the design works
it will reduce the
environmental
footprint due to
inefficiencies in
chips globally.

Economic The design will help
create job
opportunities due to
the complexity and
manufacturing
process of the
ReRAM cells.

The design will not
disrupt the
economy, only help
to improve AI
implementation.

We provide four
potential designs for
ReRAM-based
architectures that
will be allocated to
any budget needs.

The implementation
of ReRAM in chips
causes the creation
of new markets, the
generation of jobs,
and the continuation
of more sustainable
practices throughout
the economy.

Table 7.2: Four principles

47

One broader context-principle pair that is important to us is environmental beneficence.
The primary purpose of this project is to reduce power from data going into the arithmetic logic
unit and then back to the memory unit. This causes increased time, which correlates with an
increase in power consumption. To ensure that this happens, we will utilize ReRAM’s low-power
characteristics and the CIM architecture to reduce the energy required for memory-intensive
operations like MVM.

A context-principle pair that our final design will be lacking in the end but will not be
prolonged is environmental nonmaleficence. When creating something out of theory, you need to
test and recreate, and repeat the process until it is successful. At the end of April, this project will
be sent to Efabless, and one hundred chips will be manufactured to be a test chip. This will cause
a loss of materials and create waste from the manufacturing process. However, if this project
shows promising results and grows in the future, it will reduce power consumption. Thus it will
end up helping the environment and creating innovation in the other fields as well.

7.3 Virtues
Below are the three virtues that are important to this team.

1. Clear and thorough documentation: With the creation of something new, we have
decided that one of our most important virtues was clear and thorough documentation.
Clear and thorough documentation means that all design decisions, process findings, and
project details are well-recorded. To portray that we are following this virtue, we have
created tutorials and troubleshooting guides for the open software tools to help people
follow in our footsteps. We are also documenting what errors we have run into with the
architectures and what solutions we have come up with to overcome these challenges.

2. Honesty: Another one of our core virtues is honesty. This virtue correlates with our first
virtue, stating that with clear and thorough documentation, we also need to be honest with
our clients and the public about our errors and challenges. Honesty means being open and
transparent about the issues and challenges we face when completing this project. To
demonstrate our commitment to this task, we encourage open communication and try to
maintain an environment where team members are comfortable discussing challenges or
setbacks without fear of judgment. Any issues regarding timelines and setbacks are openly
discussed during our weekly meetings and are addressed with an honest assessment and
discussion.

3. Cooperativeness: Our last team member's core value is cooperativeness. This project has

each member dedicating a certain amount of time that can be more extensive than other
projects proposed. It also has a diverse set of technical skills needed to successfully
implement the criteria into this project. Cooperativeness means working in a group
collaboratively and supporting each other towards a common goal. We actively promote a
team-first mentality, where successes and work ethic are recognized within the context of
team collaboration. Regular work sessions are held to ensure that all team member’s ideas
are heard and have a chance to contribute to the designs.

48

Our individual core virtues are presented below.

● Sam Burns
○ Resourcefulness is one virtue I have demonstrated in my time spent on our senior

design project so far. Resourcefulness is a crucial virtue when working through a
project because it provides an opportunity to get access to materials and learn
things that I wouldn’t have known about; this opens the door to making more
progress and developing a deeper understanding of the project. A couple of ways I
have demonstrated this virtue are by meeting with various faculty with expertise
outside that of our own project advisor and client, meeting with the 491 TAs, and
reaching out to the Efabless community via their slack channel. Each of these
resources helped me learn more about the skills required to succeed on our senior
design project.

○ Patience is one of the most important virtues a team can demonstrate when

working on a project. There have been times that I have felt frustrated with
simulating results or unclear software errors. However, the key for a project to
progress is remaining patient and dedicated to working through issues that arise.
Every project will face struggles, remaining patient will only help the progress of a
team. One way I can work to demonstrate this is taking more unique approaches to
persistent issues I face in my circuit design on this project.

● Travis Jakl

○ Perseverance is a vital quality, especially in engineering and research projects,
where challenges and setbacks are common. It helps me stay focused on long-term
goals and motivates me to push through difficulties. By persevering, I can not only
resolve issues but also learn valuable knowledge that improves my troubleshooting
skills for this project and future ones. Perseverance helped me to push through the
toolset errors I was receiving at the start of this project, utilizing documentation,
former and current team members, and Slack to solve these issues. This not only
helped myself, but helped my team as well.

○ Time management is essential for balancing multiple responsibilities and ensuring

consistent progress on a project. I struggled with managing my time effectively as
other coursework and commitments piled up, which led to challenges in
prioritizing tasks for the project. To improve, I plan to create a more structured
approach by breaking the project into smaller, manageable tasks with clear
deadlines. I’ll use calendars and task lists to track progress and set aside specific
time slots for focused work on the project. By regularly reassessing my workload,
I’ll ensure I stay on track and reach milestones without compromising the quality
of my work.

● Noah Mack

49

○ Throughout our senior design project so far, I feel that I have demonstrated the
virtue of perseverance. As a computer engineering student, I haven’t had much
experience with schematic creation and I have had no exposure to layout creation
before this project. As we worked to get familiar with the open source tools, I kept
trying even when things weren’t working. However frustrating it was, I just needed
to keep trying until I got it figured out. Perseverance is important to me because it
is required for learning new things.

○ One important virtue that we haven’t had the chance to demonstrate to its fullest

extent is writing clear and thorough documentation. We did contribute to the
ChipForge analog documentation as we worked through their tutorial, but for our
project we will need detailed documentation so that our users have all of the tools
they need to successfully utilize our test chip. This is an important virtue to me
because I always appreciate when I am using a new technology and it has high
quality documentation to streamline the learning process.

● Olivia Price

○ One of the virtues that is important to me is honesty. It is vital to communicate
your successes and failures to your team so that they can help you or innovate on
your work. I have demonstrated honesty by attending every weekly meeting and
communicating the challenges I face or the solutions I have found. I have also
asked questions when something is unknown to me or have voiced my concerns
when the objective does not align with my knowledge.

○ One virtue that is also important to me is my lack of commitment to quality.

Commitment to quality is crucial because it shows the client that they can trust me
to maintain their satisfaction. It also improves efficiency, the project will gain a
competitive advantage, and it will ensure long-term success. To demonstrate this
virtue in the future, I will prioritize dedicating more time to the project and create a
schedule that allows me to allocate additional hours for focused work.

7.4 Ethics and Virtue Changes Throughout the Project
 From the beginning of our project to the end our team adopted a virtue-based ethical
approach, emphasizing integrity, accountability, respect for users, and a commitment to safety.
These foundational values guided our decision-making and interactions throughout the design and
development process. Despite the evolving scope of our project, our ethical stances have
remained consistent. We continued to prioritize communication, especially in documenting design
decisions and potential limitations. We also maintained our responsibility to consider
environmental implications of our work, even if we are not fabricating. However, there were no
major shifts in our ethical approach because the guiding principles that we have established above
were broad enough to accommodate the various challenges we encountered. Although, as we
progressed through the project our team’s ethical awareness has deepened by our project
experience.

50

8. Closing Material
8.1 Conclusions
 Over the course of our senior design project, our team developed and constructed a
research test vehicle that will compare four different ReRAM architectures. From initial concept
development through sketches and final testing, we worked systematically to meet the objectives
set at the beginning of the project. Our testing phase consisted of building the circuitry in
Xschem, testing it through Ngspice, and post layout testing in Magic, which demonstrated that the
design operates reliably and meets key performance criteria set above. One of our major
accomplishments was designing two new architectures that could contribute to the research of
computation in memory. In addition, we provided documentation and tutorials for future users
which allows for them to take up the project after our team is no longer in contact. Our team was
also able to figure out how tape-out and pre-check are accomplished through Efabless servers,
which has taken a new name; ChipFoundry. However, with Efabless shutting down, some criteria
of our project were not attainable during our duration in senior design. In the end, these
accomplishments aligned closely with our overall project goals, which were creating a research
test vehicle that had four unique ReRAM architectures. Also, if none of the architectures work,
we also created a section in our final design where each circuit component can be individually
characterized and tested through analog pins.
 Our final design not only satisfies the original requirements but also shows potential for
future enhancements, learning opportunities, and real-world applications. This project has
demonstrated our team’s ability to combine technical knowledge with practical problem-solving
and teamwork.

8.2 Value Provided
 Our design was developed with a strong focus on addressing the specific needs of our
target users, namely our client, ISU ECpE faculty and research teams, ChipForge, students, and
the public. By creating a flexible ReRAM-based research test vehicle, we provided a platform for
exploring in-memory computing architectures that help reduce energy consumption and data
transfer delays associated with traditional processor-memory designs. This benefits our users by
allowing them to explore different ReRAM device characteristics and compute-in-memory
operations without requiring entirely new fabrication runs.
 At the beginning of the project, our primary objective was to reduce the inefficiencies
associated with the traditional separation of memory and processing units which causes energy
consumption and latency caused by data movement. Our design successfully demonstrates the
feasibility of embedding simple compute capabilities directly into the memory array by
leveraging the unique switching behavior of ReRAM devices. Additionally, our project addresses
the experimental challenge of having a flexible and testable platform for early-stage in-memory
computing research, which lacks accessible prototyping solutions.
 The focus of our project was to decrease power consumption and data processing time
especially for artificial intelligence, neuromorphic computing, and edge computing applications.
Our project fits into this context by providing a proof of concept hardware platform that aligns
with global research efforts into in-compute memory architectures. An example of the
value-provided by this project is our ReRAM research test vehicle allows for multiple
architectures which allows for wide exploration without redesigning the entire chip

51

8.3 Next Steps
 As we finished our project, there were some requirements that were not met due to timing
and unforeseen challenges. One of the unforeseen challenges was Efabless shutting down which
made it impossible to get our chip through pre-check and tapeout check which happens on the
Efabless servers. Another unforeseen problem was some of the prior team’s components did not
work entirely, and we tried to fix them, however, we could not figure out the errors. Lastly, this
chip was supposed to be shipped off to fabricate on April 21st, 2025, however with Efabless
shutting down, this could not be accomplished. For the next steps, it would be a good idea to test
the circuitry components against noise variations to test reliability and resilience of both the
memory and logic components. It would also be a good idea to find a company that could
potentially fabricate this chip, and do pre-check and tapeout on their servers for all the
components. Once the chip is fabricated, there could be a design analysis team that can
investigate the four ReRAM architectures and find which one works best and innovate upon its
design. These steps will build on our foundation and push ReRAM-based in-memory computing
closer to practical, high-impact deployment.

9. References

[1] P. Gray, P. Hurst, S. Lewis, and R. Meyer, “Noise in Integrated Circuits,” in Analysis and

Design of Analog Integrated Circuits 4th ed., Hoboken, NJ, USA: Wiley, 2001, ch. 11, pp.
748-802.

[2] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture for Neural Network

Computation in ReRAM-Based Main Memory," Proceedings of the 43rd Annual
International Symposium on Computer Architecture (ISCA), Seoul, Korea, 2016, pp.
27–39, doi: 10.1109/ISCA.2016.13.

[3] A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ

Analog Arithmetic in Crossbars," Proceedings of the 43rd Annual International
Symposium on Computer Architecture (ISCA), Seoul, Korea, 2016, pp. 14–26, doi:
10.1109/ISCA.2016.12.

[4] IEEE, "IEEE Standards Association," [Online]. Available: https://standards.ieee.org/.

[Accessed: 06-Dec-2024]

[5] SkyWater PDK Authors, "Sky130-FD PR ReRAM Documentation," [Online]. Available:

https://sky130-fd-pr-reram.readthedocs.io/en/latest/index.html. [Accessed: 06-Dec-2024].

[6] C. Xu et al., "Overcoming the challenges of crossbar resistive memory architectures,"

2015 IEEE 21st International Symposium on High Performance Computer Architecture

https://standards.ieee.org/
https://sky130-fd-pr-reram.readthedocs.io/en/latest/index.html
https://sky130-fd-pr-reram.readthedocs.io/en/latest/index.html

52

(HPCA), Burlingame, CA, USA, 2015, pp. 476-488, doi: 10.1109/HPCA.2015.7056056.

[7] J. Thater, “Open-Source Analog Design Flow Using Efabless and the SkyWater 130 nm

PDK”, Iowa State University Senior Design Team sddec23-08, Nov. 27, 2023. [Online].
Available:
https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRA
%20Setup.pdf. [Accessed: Dec. 6, 2024].

[8] ChipForge, "ISU Chip Fab Documentation: Analog Design," [Online]. Available:

https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/analog/index. [Accessed:
Dec. 6, 2024].

[9] B. Hofer and P. Hyung-Joo, "Sky130 Ngspice ReRAM," [Online]. Available:

https://github.com/barakhoffer/sky130_ngspice_reram. [Accessed: Dec. 6, 2024].

[10] E. R. Hsieh et al., "High-Density Multiple Bits-per-Cell 1T4R RRAM Array with Gradual

SET/RESET and its Effectiveness for Deep Learning," 2019 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 35.6.1-35.6.4, doi:
10.1109/IEDM19573.2019.8993514.

[11] J. Thater, A. Petersen, M. Ottersen, and R. Dukele,”ReRAM Compute ASIC Fabrication”,

Iowa State University Senior Design Team sddec23-08, Nov. 27, 2023. [Online].
Available:
https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRA
%20Setup.pdf. [Accessed: Dec. 6, 2024].

[12] K. Kivimagi, J. Xie, G. Moorman, and N. Cook, “ReRAM Compute Crossbar

Fabrication”, Iowa State University Senior Design Team sddec24-13, May 2024. [Online].
Available:
https://sddec24-13.sd.ece.iastate.edu/SDDEC24_13_DESIGN_DOCUMENT%20(2).pdf.
[Accessed: Dec. 6, 2024].

https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRAM%20Setup.pdf
https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRAM%20Setup.pdf
https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/analog/index
https://github.com/barakhoffer/sky130_ngspice_reram
https://github.com/barakhoffer/sky130_ngspice_reram
https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRAM%20Setup.pdf
https://sddec23-08.sd.ece.iastate.edu/reports/Senior%20Design%20Enviornment_ReRAM%20Setup.pdf
https://sddec24-13.sd.ece.iastate.edu/SDDEC24_13_DESIGN_DOCUMENT%20(2).pdf

53

10. Appendices

10.1 Operation Manual
Introduction

This document acts as a guide to using the ASIC ReRAM test chip designed by senior
design team SDMay25-19 at Iowa State University. Information enclosed in this document
includes C code documentation and pin definitions, as well as the pinout for the chip itself.

Figure 10.1: Top Level Schematic

 The overall design of our chip consists of four ReRAM compute architectures, as well as a
peripheral circuitry area with our component circuits individually mapped to pins. All
components of this chip can be tested using the code and pin definitions provided in this
document.

54

Code
 Our repository contains two C files. The first is called “sdmay25_defs.h”, which contains
helpful functions for writing and reading logic analyzer pins, as well as pin definitions for ease of
use. The second file is an example “main.c”, which performs a few example functions on the chip
to get the user started.

static inline void write_la_pin(uint32_t pin, uint32_t val)

Use this function to write a HIGH or LOW value to a single pin.

static inline void write_la_pins(uint32_t lsb_pin, uint32_t width,

uint32_t val)

Use this function to write a value to the logic analyzer that spans more than a single bit. The pin
definitions provide appropriate values for lsb_pin and width (see definitions table below).

static inline uint32_t read_la_pin(uint32_t pin)

Use this function to read a single logic analyzer pin.

static inline uint32_t read_la_pins(uint32_t lsb_pin, uint32_t width)

Use this function to read a value of a given width from the least significant pin (lsb_pin). The pin
definitions provide appropriate values for lsb_pin and width (see definitions table below).

See our repository for example main.c.

55

Definitions/Pinout

*Note: for signals wider than 1 bit, the full range of bits is noted next to the least significant bit
pin. Width

sdmay_defs.h Definition Caravel Pin Description/Notes

PERIPH_SELECT la_data_in[127] 1: peripheral output, 0:
architecture output

PERIPH_DATA_OUT_LSB la_data_out[42:0]

PERIPH_DATA_OUT_WIDTH N/A (value 43)

TWO_STAGE_OP_AMP_IN_MINUS la_data_in[0] 2 stage op amp Vin-

TWO_STAGE_OP_AMP_IN_PLUS la_data_in[1] 2 stage op amp Vin+

TWO_STAGE_OP_AMP_OUT la_data_out[0]

COMPARATOR_IN_PLUS la_data_in[2] Comparator Vin+

COMPARATOR_IN_MINUS la_data_in[3] Comparator Vin-

COMPARATOR_OUT_PLUS la_data_out[1] Comparator Vout+

COMPARATOR_OUT_MINUS la_data_out[2] Comparator Vout-

OP_AMP_5T_IN_PLUS la_data_in[4] 5T op amp Vin+

OP_AMP_5T_IN_MINUS la_data_in[5] 5T op amp Vin-

OP_AMP_5T_NEG_IN_PLUS la_data_in[6] 5T op amp neg Vin+

OP_AMP_5T_NEG_IN_MINUS la_data_in[7] 5T op amp neg Vin-

OP_AMP_5T_OUT la_data_out[3]

OP_AMP_5T_NEG_OUT la_data_out[4]

TIA_02_IN la_data_in[8]

TIA_04_IN la_data_in[9]

TIA_02_OUT la_data_out[5]

TIA_04_OUT la_data_out[6]

ADC_IN la_data_in[10]

56

ADC_OUT la_data_out[7]

BL_IN_1T1R la_data_in[12] Bitline input

WL_IN_1T1R la_data_in[13] Worldline input

SL_OUT_1T1R la_data_out[23] Sourceline input

BL_IN_2X2_LSB la_data_in[15:14]

BL_IN_2X2_WIDTH N/A (value 2)

WL_IN_2X2_LSB la_data_in[17:16]

WL_IN_2X2_WIDTH N/A (value 2)

SL_OUT_2X2_LSB la_data_out[25:24]

SL_OUT_2X2_WIDTH N/A (value 2)

BL_IN_4X4_LSB la_data_in[21:18]

BL_IN_4X4_WIDTH N/A (value 4)

WL_IN_4X4_LSB la_data_in[25:22]

WL_IN_4X4_WIDTH N/A (value 4)

SL_OUT_4X4_LSB la_data_out[29:26]

SL_OUT_4X4_WIDTH N/A (value 4)

BL_IN_8X8_LSB la_data_in[33:26]

BL_IN_8X8_WIDTH N/A (value 8)

WL_IN_8X8_LSB la_data_in[40:34]

WL_IN_8X8_WIDTH N/A (value 8)

SL_OUT_8X8_LSB la_data_out[37:30]

SL_OUT_8x8_WIDTH N/A (value 8)

INVERTER_IN la_data_in[42]

INVERTER_OUT la_data_out[38]

TRANSMISSION_GATE_IN la_data_in[43]

57

TRANSMISSION_GATE_SP la_data_in[44]

TRANSMISSION_GATE_SN la_data_in[45]

TRANSMISSION_GATE_OUT la_data_out[39]

MUX_2_1_SEL la_data_in[46] 0: output A, 1: output B

MUX_2_1_A la_data_in[47]

MUX_2_1_B la_data_in[48]

MUX_2_1_OUT la_data_out[40]

MUX_4_1_SEL1 la_data_in[49] See next row

MUX_4_1_SEL2 la_data_in[50] (With SEL1) 00: output A,
01: output B, 10: output C,
11: output D

MUX_4_1_A la_data_in[51]

MUX_4_1_B la_data_in[52]

MUX_4_1_C la_data_in[53]

MUX_4_1_D la_data_in[54]

MUX_4_1_OUT la_data_out[41]

SR_LATCH_S la_data_in[55]

SR_LATCH_R la_data_in[56]

SR_LATCH_Q la_data_out[42]

ARCH_SELECT_LSB la_data_in[126:125] 00: sddec23-08. 01:
sddec24-13, 10: sdmay25-19
arch1, 11: sdmay25-19 arch2

ARCH_SELECT_WIDTH N/A (value 2)

ARCH_DATA_OUT_LSB la_data_out[17:0]

ARCH_DATA_OUT_WIDTH N/A (value 18)

WRITE_SELECT_8LINEBITINPUT_1 la_data_in[0]

WRITE_SELECT_8LINEBITINPUT_2 la_data_in[28]

58

WRITE_FORM_SELECT_8LINEBITINPUT_1 la_data_in[1]

WRITE_FORM_SELECT_8LINEBITINPUT_2 la_data_in[29]

LA_IN_8LINEBITINPUT_1_LSB la_data_in[9:2]

LA_IN_8LINEBITINPUT_1_WIDTH N/A (value 8)

LA_IN_8LINEBITINPUT_2_LSB la_data_in[37:30]

LA_IN_8LINEBITINPUT_2_WID
TH

N/A (value 8)

WRITE_SELECT_8LINEBITINPUT_1 la_data_in[10]

WRITE_SELECT_8LINEBITINPUT_2 la_data_in[38]

LA_IN_8LINEWORDINPUT_1_LSB la_data_in[18:11]

LA_IN_8LINEWORDINPUT_1_WIDTH N/A (value 8)

LA_IN_8LINEWORDINPUT_2_LSB la_data_in[46:39]

LA_IN_8LINEWORDINPUT_2_WIDTH N/A (value 8)

S_8LINESELECTINPUT_1 la_data_in[19]

S_8LINESELECTINPUT_2 la_data_in[47]

LA_IN_8LINESELECTINPUT_1_LSB la_data_in[27:20]

LA_IN_8LINESELECTINPUT_1_WIDTH N/A (value 8)

LA_IN_8LINESELECTINPUT_2_LSB la_data_in[55:48]

LA_IN_8LINESELECTINPUT_2_WIDTH N/A (value 8)

VSSNEG_8LINESELECTOUTPUT_02 la_data_in[8]

VSSNEG_8LINESELECTOUTPUT_04 la_data_in[17]

LA_OUT_8LINESELECTOUTPUT02_LSB la_data_out[7:0]

LA_OUT_8LINESELECTOUTPUT02_WIDTH N/A (value 8)

LA_OUT_8LINESELECTOUTPUT04_LSB la_data_out[16:9]

LA_OUT_8LINESELECTOUTPUT04_WIDTH N/A (value 8)

Table 10.1: Pinout

59

10.2 Alternative/Initial Versions of Design
 Due to the nature of our project, our design was pretty much set in stone from the
beginning. We had two previous team’s work to go off of, so we had a good idea of what we
needed to do. Our job was integrating all of the designs onto one chip. Rather than revising our
design, most of our time was spent getting familiar with tools and verifying/improving work from
the previous teams.

10.3 Other Considerations if applicable

Figure 10.2: explains ReRAM structural and operation basics and is extracted directly from [10]

Figure 10.3: explains ReRAM state change requirements and is extracted directly from [5]

60

ASIC Design Troubleshooting Guide
This guide contains troubleshooting steps for ASIC design workflows, including tools like Magic,
Xschem, Netgen, Klayout, and ReRAM integration.

Table of Contents
● General Setup Issues
● Magic Tool Issues
● Xschem Issues
● Klayout DRC Issues
● LVS Check Issues
● Precheck Failures
● ReRAM Integration Issues

General Setup Issues

Issue: Incorrect SPICE File Generation in Xschem

Symptoms: SPICE files contain incorrect or extraneous information.
Resolution:

1. Clone the efabless/caravel_user_project_analog repository:

git clone https://github.com/efabless/caravel_user_project_analog
2. Run make setup as instructed on the Caravel documentation.
3. If Ngspice fails to install, copy the pdk folder from analog_tutorial to the new

template directory.
4. Re-run simulations to verify SPICE file generation.

Magic Tool Issues

Issue: Incorrect Magic Configuration File

61

Symptoms: Using the wrong .magicrc file results in missing via options (e.g., extraDevices
1&2 menu selections).
Resolution:

1. Open Magic with the correct configuration:

magic -rcfile $PDKPATH/libs.tech/magic/sky130A.magicrc
a. When using ReRam, make sure to use sky130B

2. Avoid using magic -rcfile sky130A.magicrc as suggested in some tutorials.

Supporting Image:

Figure 10.4: Magic interface showing Devices 1 & 2 menu with proper vias.

Issue: Wiring VDD and VSS Pins in Project Wrapper

Symptoms: Incorrect pin connections cause LVS failures.
Resolution:

1. Ensure both pin instances of VDD and VSS are connected (e.g., wire vccd1 to vccd1).
2. Verify connections in the layout view before running LVS.

62

Supporting Image:

Figure 10.5: Layout showing correct VDD pin connections.

Xschem Issues

Issue: Symbol Type Mismatch (Primitive vs. Subcircuit)

Symptoms: LVS fails due to incorrect symbol type in Xschem after parasitic extraction or
wrapper integration.
Resolution:

1. After parasitic extraction, switch the symbol type from “primitive” to “subcircuit” in
Xschem.

2. Ensure the symbol is set to “subcircuit” when placing it in the
user_analog_project_wrapper.

3. Generate the wrapper netlist and verify the symbol type.

63

Supporting Image:

Figure 10.6: LVS result indicating symbol issue.

Klayout DRC Issues

Issue: Precheck DRC Failure

Symptoms: DRC errors reported in Klayout, visible in klayout.xml.
Resolution:

1. Open klayout.xml to locate error coordinates (e.g., polygon at (333.58, 1.75)).
2. Inspect the layout in Magic or Klayout at the specified coordinates.
3. Common cause: Missing or erased pin poly substance, causing errors on pin labels.
4. Correct the layout and re-run DRC.

64

Supporting Image:

Figure 10.7: Klayout highlighting a DRC error at specified coordinates.

LVS Check Issues

Issue: LVS Execution in Netgen

Symptoms: Errors during LVS check due to incorrect file paths or settings.
Resolution:

1. Include both SPICE files (schematic and layout) in the /netgen directory and ensure that
it is your current directory.

2. Use the following command to run LVS:
netgen lvs "/path/to/schematic.spice schematic_subcircuit_name" "/path/to/magic.spice
magic_subcircuit_name" sky130A_setup.tcl
 Example:
netgen lvs "/home/tjdjakl/analog_tutorials/xschem/inverter.spice
inverter" "/home/tjdjakl/analog_tutorials/mag/inverterMag.spice
inverter" sky130A_setup.tcl

3. Ensure full file paths are provided if files are not found.
4. Do not include the -batch flag.
5. When generating the .spice netlist, check “set top to .subckt” in the tool.

65

Supporting Image:

Figure 10.8: LVS output indicating file path error.

Issue: Precheck LVS Failure Despite Local LVS Passing

Symptoms: No lvs.report in precheck_results, even though local LVS passes.
Resolution:

1. Copy the lvs_config.json file from
analog_tutorial/lvs/user_analog_project_wrapper/ to the ReRAM project’s
LVS directory.

2. Ensure the following lines were added to lvs_config.json:
"STD_CELL_LIBRARY": "...",
"INCLUDE_CONFIGS": "...",
"LVS_SPICE_FILES_TO_FIX": "..."

3. Rename the LVS directory folder to user_analog_project_wrapper if needed.
4. Ensure the cell file is in the current directory.
5. Re-run the LVS check.

66

Precheck Failures

Issue: Consistency Error in SPICE File

Symptoms: Precheck fails with a “Consistency” error related to the circuit name.
Resolution:

1. Open the .spice file in /netgen.
2. Remove any comments within the file (any line beginning with * or **).
3. Re-run precheck.

Supporting Image:

Figure 10.9: Commented lines within .spice file to be removed.

Issue: GPIO Defines Failure

Symptoms: Precheck fails due to unconfigured GPIO pins.
Resolution:

1. Open up ~/verilog/rtl/user_defines.v
2. Set all GPIO pins to GPIO_MODE_MGMT_STD_BIDIRECTIONAL.
3. For OEB pins, configure them as analog to resolve related errors.
4. Verify pin settings in the configuration file.
5. Re-run precheck.

67

Issue: Missing SPICE File in Xschem

Symptoms: Precheck LVS error: cp: cannot stat
'/path/to/user_analog_project_wrapper.spice'.
Resolution:

1. Ensure the user_analog_project_wrapper.spice file is present in both /xschem
and /netgen directories.

2. Copy the file to the required locations and re-run precheck.

Issue: README and Documentation Errors

Symptoms: Precheck fails due to default issues in documentation files.
Resolution:

1. Replace the contents of /analog_tutorials/README.md with
/analog_tutorials/docs/source/index.rst.

2. Re-run precheck to verify resolution.

ReRAM Integration Issues

Issue: Installing ReRAM Source Files

Symptoms: Errors during ReRAM installation due to sudo permissions.
Resolution:

1. Clone the ReRAM repository:
git clone https://github.com/barakhoffer/sky130_ngspice_reram

2. cd sky130_ngspice_reram
3. Edit install.sh to remove all instances of sudo at the bottom of the file.
4. Run the installation: source install.sh

68

Issue: LVS and Precheck with ReRAM

Symptoms: LVS or precheck failures due to SPICE file issues in the ReRAM project.
Resolution:

1. Modify SPICE files by renaming instances and removing unwanted lines, as detailed in
referenced guides.

2. Update the project’s Makefile per external documentation.
3. Run source setup.sh and make setup.
4. Fix CARAVEL_ROOT path errors by updating the export statement:

export CARAVEL_ROOT=/correct/path
5. Re-run make setup and make precheck.

Additional Notes
● Always verify file paths and naming conventions to avoid common errors.
● Refer to external documentation (e.g., Jake’s and Konnor’s guides) for detailed steps on

ReRAM and precheck workflows.
● For persistent issues, check the Caravel documentation or community forums(Slack).
● Ensure all tools (Magic, Xschem, Netgen, Klayout) are using the correct PDK version

(sky130A or sky130B).

69

10.4 Code
We wrote two C files for testing our final chip. These can be found in our Git repository, under the
bringup/code directory. The first file, sdmay25_defs.h, consists of utility functions for
reading/writing logic analyzer pins as well as pin name definitions for ease of readability. The
second file is an example main.c file, which shows how form, write, MAC, and read operations
could be tested using the functions and definitions from sdmay25_defs.h.

sdmay25_defs.h:
#include <stdint.h>

#include "caravel/defs.h"

//-----------//

// Utilities //

//-----------//

// gets the relative bit to the la register (% 32)

#define rel_bit(x) ((x) % 32)

#define HIGH 1U

#define LOW 0U

// gets the la input register for the provided la pin

static inline volatile uint32_t* get_la_in_reg(uint32_t pin) {

 uint32_t index = pin / 32;

 switch(index) {

 case 0:

 return ®_la0_data_in;

 case 1:

 return ®_la1_data_in;

 case 2:

 return ®_la2_data_in;

 case 3:

 return ®_la3_data_in;

 default:

 return ®_la0_data_in; //should never be reached

70

 }

}

// gets the la output register for the provided la pin

static inline volatile uint32_t* get_la_out_reg(uint32_t pin) {

 uint32_t index = pin / 32;

 switch(index) {

 case 0:

 return ®_la0_data;

 case 1:

 return ®_la1_data;

 case 2:

 return ®_la2_data;

 case 3:

 return ®_la3_data;

 default:

 return ®_la0_data; //should never be reached

 }

}

// sets a single logic analyzer input pin

static inline void write_la_pin(uint32_t pin, uint32_t val) {

 *get_la_in_reg(pin) |= (1U << rel_bit(pin));

}

// sets multiple logic analyzer pins to the given value (use for multi-bit

inputs)

static inline void write_la_pins(uint32_t lsb_pin, uint32_t width,

uint32_t val) {

 uint32_t end_pin = lsb_pin + width - 1;

 // First, handle the first register (starting from lsb_pin)

 uint32_t first_reg = lsb_pin / 32;

71

 uint32_t first_reg_pin = rel_bit(lsb_pin); // Bit position in the

first register

 uint32_t first_reg_mask = ((1U << width) - 1) << first_reg_pin;

 // Mask out the value for the first register

 uint32_t first_reg_value = (val << first_reg_pin) & first_reg_mask;

 *get_la_in_reg(lsb_pin) |= first_reg_value; // Set bits in the first

register

 // If the range spans multiple registers

 if (first_reg != end_pin / 32) {

 // Set full 32-bit registers in between (if any)

 for (uint32_t i = first_reg + 1; i < end_pin / 32; ++i) {

 uint32_t mid_val = (val >> (i * 32)) & 0xFFFFFFFFU; //

Extract full 32 bits for the middle registers

 *get_la_in_reg(i * 32) |= mid_val;

 }

 // Handle the last register (from the beginning of last pin to the

end of the range)

 uint32_t last_reg_pin = rel_bit(end_pin); // Bit position in the

last register

 uint32_t last_reg_mask = (1U << (last_reg_pin + 1)) - 1; // Mask

to clear up to the last bit

 // Extract the remaining bits for the last register

 uint32_t last_reg_value = val >> (end_pin / 32 * 32);

 *get_la_in_reg(end_pin) |= (last_reg_value & last_reg_mask); //

Set bits in the last register

 }

}

// gets a single logic analyzer output pin

static inline uint32_t read_la_pin(uint32_t pin) {

 return (*get_la_out_reg(pin) & (1U << rel_bit(pin))) >> rel_bit(pin);

72

}

// gets multiple logic analyzer output pins (use for output bus)

static inline uint32_t read_la_pins(uint32_t lsb_pin, uint32_t width) {

 uint32_t end_pin = lsb_pin + width - 1;

 uint32_t result = 0;

 // First, handle the first register (starting from lsb_pin)

 uint32_t first_reg = lsb_pin / 32;

 uint32_t first_reg_pin = rel_bit(lsb_pin); // Bit position in the

first register

 uint32_t first_reg_mask = ((1U << width) - 1) << first_reg_pin;

 // Get bits from the first register

 result |= (*get_la_out_reg(lsb_pin) & first_reg_mask) >>

first_reg_pin;

 // If the range spans multiple registers

 if (first_reg != end_pin / 32) {

 // Get full 32-bit registers in between (if any)

 for (uint32_t i = first_reg + 1; i < end_pin / 32; ++i) {

 result |= (*get_la_out_reg(i * 32) & 0xFFFFFFFFU) << ((i -

first_reg) * 32);

 }

 // Handle the last register (from the beginning of last pin to the

end of the range)

 uint32_t last_reg_pin = rel_bit(end_pin); // Bit position in the

last register

 uint32_t last_reg_mask = (1U << (last_reg_pin + 1)) - 1; // Mask

to clear up to the last bit

 // Get the remaining bits for the last register and shift into the

result

73

 result |= (*get_la_out_reg(end_pin) & last_reg_mask) << ((end_pin

/ 32 - first_reg) * 32);

 }

 return result;

}

//---------------//

// Architectures //

//---------------//

// Architecture Select Bits

#define ARCH_SELECT_LSB 125

#define ARCH_SELECT_WIDTH 2

#define ARCH_SELECT_MASK ((1U << ARCH_SELECT_WIDTH) - 1) <<

(rel_bit(ARCH_SELECT_LSB))

// Architecture Data Out

#define ARCH_DATA_OUT_LSB 0

#define ARCH_DATA_OUT_WIDTH 18

#define ARCH_DATA_OUT_MASK ((1U << ARCH_DATA_OUT_WIDTH) - 1) <<

(rel_bit(ARCH_DATA_OUT_LSB))

//-- Architecture Pin Definitions --//

// bit lines

#define WRITE_SELECT_8LINEBITINPUT_1 0

#define WRITE_SELECT_8LINEBITINPUT_2 28

#define WRITE_FORM_SELECT_8LINEBITINPUT_1 1

#define WRITE_FORM_SELECT_8LINEBITINPUT_2 29

#define LA_IN_8LINEBITINPUT_1_LSB 2

74

#define LA_IN_8LINEBITINPUT_1_WIDTH 8

#define LA_IN_8LINEBITINPUT_2_LSB 30

#define LA_IN_8LINEBITINPUT_2_WIDTH 8

// word lines

#define WRITE_SELECT_8LINEBITINPUT_1 10

#define WRITE_SELECT_8LINEBITINPUT_2 38

#define LA_IN_8LINEWORDINPUT_1_LSB 11

#define LA_IN_8LINEWORDINPUT_1_WIDTH 8

#define LA_IN_8LINEWORDINPUT_2_LSB 39

#define LA_IN_8LINEWORDINPUT_2_WIDTH 8

#define LA_IN_8LINEWORDINPUT_1_LSB 11

#define LA_IN_8LINEWORDINPUT_1_WIDTH 8

// select lines

#define S_8LINESELECTINPUT_1 19

#define S_8LINESELECTINPUT_2 47

#define LA_IN_8LINESELECTINPUT_1_LSB 20

#define LA_IN_8LINESELECTINPUT_1_WIDTH 8

#define LA_IN_8LINESELECTINPUT_2_LSB 48

#define LA_IN_8LINESELECTINPUT_2_WIDTH 8

#define VSSNEG_8LINESELECTOUTPUT_02 8

#define VSSNEG_8LINESELECTOUTPUT_04 17

#define LA_OUT_8LINESELECTOUTPUT02_LSB 0

#define LA_OUT_8LINESELECTOUTPUT02_WIDTH 8

75

#define LA_OUT_8LINESELECTOUTPUT04_LSB 9

#define LA_OUT_8LINESELECTOUTPUT04_WIDTH 8

//----------------------//

// Peripheral Circuitry //

//----------------------//

// Peripheral Select Bit

#define PERIPH_SELECT 127

#define PERIPH_SELECT_MASK ((1U << (rel_bit(PERIPH_SELECT))))

#define PERIPH_DATA_OUT_LSB 0

#define PERIPH_DATA_OUT_WIDTH 43

//-- Peripheral Circuit Pin Definitions --//

// Two Stage Op Amp

#define TWO_STAGE_OP_AMP_IN_MINUS 0

#define TWO_STAGE_OP_AMP_IN_PLUS 1

#define TWO_STAGE_OP_AMP_OUT 0

// Comparator

#define COMPARATOR_IN_PLUS 2

#define COMPARATOR_IN_MINUS 3

#define COMPARATOR_OUT_PLUS 1

#define COMPARATOR_OUT_MINUS 2

// 5T Op Amp

#define OP_AMP_5T_IN_PLUS 4

#define OP_AMP_5T_IN_MINUS 5

#define OP_AMP_5T_NEG_IN_PLUS 6

#define OP_AMP_5T_NEG_IN_MINUS 7

76

#define OP_AMP_5T_OUT 3

#define OP_AMP_5T_NEG_OUT 4

// TIAs

#define TIA_02_IN 8

#define TIA_04_IN 9

#define TIA_02_OUT 5

#define TIA_04_OUT 6

// ADC

#define ADC_IN 10

#define ADC_OUT 7

// 1T1R

#define BL_IN_1T1R 12

#define WL_IN_1T1R 13

#define SL_OUT_1T1R 23

// 2x2 Crossbar

#define BL_IN_2X2_LSB 14

#define BL_IN_2X2_WIDTH 2

#define WL_IN_2X2_LSB 16

#define WL_IN_2X2_WIDTH 2

#define SL_OUT_2X2_LSB 24

#define SL_OUT_2X2_WIDTH 2

// 4x4 Crossbar

#define BL_IN_4X4_LSB 18

#define BL2_IN_4X4_WIDTH 4

#define WL_IN_4X4_LSB 22

77

#define WL_IN_4X4_WIDTH 4

#define SL_OUT_4X4_LSB 26

#define SL_OUT_4X4_WIDTH 4

// 8x8 Crossbar

#define BL_IN_8X8_LSB 26

#define BL_IN_8X8_WIDTH 8

#define WL_IN_8X8_LSB 34

#define WL_IN_8X8_WIDTH 8

#define SL_OUT_8X8_LSB 30

#define SL_OUT_8x8_WIDTH 8

// Inverter

#define INVERTER_IN 42

#define INVERTER_OUT 38

// Transmission Gate

#define TRANSMISSION_GATE_IN 43

#define TRANSMISSION_GATE_SP 44

#define TRANSMISSION_GATE_SN 45

#define TRANSMISSINO_GATE_OUT 39

// 2 to 1 Mux

#define MUX_2_1_SEL 46

#define MUX_2_1_A 47

#define MUX_2_1_B 48

#define MUX_2_1_OUT 40

// 4 to 1 Mux

78

#define MUX_4_1_SEL1 49

#define MUX_4_1_SEL2 50

#define MUX_4_1_A 51

#define MUX_4_1_B 52

#define MUX_4_1_C 53

#define MUX_4_1_D 54

#define MUX_4_1_OUT 41

// SR Latch

#define SR_LATCH_S 55

#define SR_LATCH_R 56

#define SR_LATCH_Q 42

main.c:
#include "sdmay25_defs.h"

int main() {

 // inverter test

 write_la_pin(PERIPH_SELECT, HIGH); // selects for output from

peripheral circuitry testbench

 write_la_pin(INVERTER_IN, HIGH); // sets input to inverter high

 if(read_la_pin(INVERTER_OUT) == LOW) { // check output of inverter

 printf("Inverter test successful! (Expected LOW, Actual LOW)");

 } else {

 printf("Inverter test failed. (Expected LOW, Actual HIGH)");

 }

 // forming ReRAM cells

 write_la_pin(WRITE_FORM_SELECT_8LINEBITINPUT_1, HIGH);

79

 write_la_pins(LA_IN_8LINEBITINPUT_1_LSB, LA_IN_8LINEBITINPUT_1_WIDTH,

0xFF);

 write_la_pins(LA_IN_8LINEWORDINPUT_1_LSB,

LA_IN_8LINEWORDINPUT_1_WIDTH, 0xFF);

 write_la_pins(LA_IN_8LINESELECTINPUT_1_LSB,

LA_IN_8LINESELECTINPUT_1_WIDTH, 0x0);

 // INSERT APPROPRIATE DELAY FOR FORMING //

 write_la_pin(WRITE_FORM_SELECT_8LINEBITINPUT_1, LOW);

 write_la_pins(LA_IN_8LINEBITINPUT_1_LSB, LA_IN_8LINEBITINPUT_1_WIDTH,

0x0);

 write_la_pins(LA_IN_8LINEWORDINPUT_1_LSB,

LA_IN_8LINEWORDINPUT_1_WIDTH, 0x0);

 // Writing to ReRAM cells, setting all cells to the same value

 uint8_t value = 0xFF;

 write_la_pins(LA_IN_8LINEBITINPUT_1_LSB, LA_IN_8LINEBITINPUT_1_WIDTH,

value);

 write_la_pins(LA_IN_8LINESELECTINPUT_1_LSB,

LA_IN_8LINESELECTINPUT_1_WIDTH, 0xFF ^ value);

 write_la_pins(LA_IN_8LINEWORDINPUT_1_LSB,

LA_IN_8LINEWORDINPUT_1_WIDTH, 0xFF);

 write_la_pin(WRITE_SELECT_8LINEBITINPUT_1, HIGH);

 // MAY NEED TO ADD DELAY FOR RESULTS TO HOLD //

 // MAC

 write_la_pins(LA_IN_8LINEBITINPUT_1_LSB, LA_IN_8LINEBITINPUT_1_WIDTH,

0x0);

 write_la_pins(LA_IN_8LINESELECTINPUT_1_LSB,

LA_IN_8LINESELECTINPUT_1_WIDTH, 0x0);

 write_la_pins(LA_IN_8LINEWORDINPUT_1_LSB,

LA_IN_8LINEWORDINPUT_1_WIDTH, 0x1);

80

 // MAY NEED TO ADD DELAY FOR RESULTS TO PROPAGATE //

 // Read output from architecture 0

 write_la_pins(ARCH_SELECT_LSB, ARCH_SELECT_WIDTH, 0x0);

 write_la_pin(PERIPH_SELECT, LOW);

 uint32_t result = read_la_pins(LA_OUT_8LINESELECTOUTPUT02_LSB,

LA_OUT_8LINESELECTOUTPUT02_WIDTH);

 if(result == 8) { // each cell has a 1, multiplying by the 1 on our

wordline, 1 * 1 + 1 * 1 + ... 8 times = 8

 printf("MAC test successful! (Expected 8, Actual 8)");

 } else {

 printf("MAC test failed. (Expected 8, Actual %d)", result);

 }

}

10.5 Team Contract
10.5.1 Team Members
➢ Computer Engineers

○ Noah Mack

➢ Electrical Engineers

○ Sam Burns
○ Travis Jakl
○ Olivia Price

10.5.2 Required Skill Set For Your Project
Below is a list of the required technical skill sets that are needed to complete this project
successfully.

● Analog Design
○ Fabrication and Layout Design
○ Power Management and Efficiency
○ Circuit Simulation and Analysis
○ Measurement and Debugging

81

○ ReRAM Cell Architecture

● Digital Design
○ Synthesis
○ Logic and Circuit Design
○ Memory and Data Path Design
○ Hardware Description Design (Verilog)
○ Integration and Interface Design (C-code)
○ Testing and Debugging

10.5.3 Skill Sets Covered by the Team
Below is a table of skills that each team has acquired for this project, either during the semester or
previously learned from prior semesters.

Skills Team Member

Fabrication and Layout Design All members

Power Management and Efficiency All members

Circuit Simulation and Analysis Sam Burns, Travis Jakl, & Olivia Price

Measurement and Debugging (Analog) Sam Burns, Travis Jakl, & Olivia Price

ReRAM Cell Architecture Sam Burns, Travis Jakl, & Olivia Price

Synthesis Noah Mack

Logic and Circuit Design All members

Memory and Data Path Design All members

Hardware Description Design (Verilog) Noah Mack

Integration and Interface Design (C-code) Noah Mack & Sam Burns

Testing and Debugging (Digital) Noah Mack

Table 10.2: Skill sets covered by team

10.5.4 Project Management Style Adopted By The Team
This team’s project management was waterfall. Included in section 3.4 is our Gantt chart, which is
a style of water project management. We divided the months across the two semesters into seven
different tasks. Each primary task has one or two sub-tasks. We decided not to include hard

82

deadlines because many of our functions depend on figuring out task one: how to use the
open-source tools. Not much documentation is provided, so it will take time to acquire the
knowledge on how to utilize them to their fullest capabilities.

10.5.5 Initial Project Management Roles
Below is the list of each team member and their acquired roles for this project.

● Sam Burns: Analog Signal Designer & Digital Signal Designer
● Travis Jakl: Analog Signal Designer & Digital Signal Designer
● Noah Mack: Digital Signal Designer
● Olivia Price: Analog Signal Designer

10.5.6 Team Contract

Team Name
 _________________SDMay25-19_________________

Team Members:
1) ______________Noah Mack________ 2) ___________Olivia Price__________
3) ____________Sam Burns__________ 4) ______________Travis Jakl________

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
a. Team meeting with advisors: Thursday, 2 pm, Durham 353
b. Team meetings: Friday 1 pm, TLA, and Sundays 2 pm at ChipISU Club in Durham

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face): Phone

3. Decision-making policy (e.g., consensus, majority vote): Consensus
4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived): Meeting Notes will be kept on a running document in the shared google
drive that has the rest of our collaborative resources.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
Each person attends a set meeting. If attendance is not possible, then
communication prior to the meeting is necessary.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
Each team member maintains and holds their designated responsibilities,
communicating progress and expected progress, as well as ensuring important
tasks can be completed prior to deadlines

83

3. Expected level of communication with other team members:
Communication should be clear and frequent. Communicate about problems,
progress, or expected absences of meetings.

4. Expected level of commitment to team decisions and tasks:
Each team member should be committed to their role and responsibilities,
discussing any discrepancies with the rest of the team

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):
The proposed project will include one digital design member, Noah, while the rest will
work on analog design. The client interaction will happen every week, face-to-face for an
hour. This will include sharing out findings and whether the clients want what we propose.
The individual component design will come down to Sam, Olivia, and Noah, while Travis
coordinates between the three of us. This will ensure the analog and digital designs do not
stray too far from each other.

2. Strategies for supporting and guiding the work of all team members:
Travis will be the coordinator for digital and analog design. The goal of this project is to
get all of the pieces of the FPGA board together. This involves knowing what everyone is
doing and someone line streaming between us to keep us together.

3. Strategies for recognizing the contributions of all team members:
Team members will be responsible for making in-depth documentation of their work. Not only
will detailed documentation make drafting the design document easier, but it will also allow
members to efficiently keep track of their work.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

a. Noah - Deep knowledge of digital design and embedded C, can handle most of the
surrounding digital architecture. Only computer engineering major on the team.

b. Travis - Knowledge of both digital and analog design. This will be needed to
integrate the analog and digital aspects of this project.

c. Olivia - Electrical engineering with an emphasis in VLSI, which is designing and
fabricating elements to be put on a board. This will help with putting the entire
design together using analog and digital knowledge.

d. Sam - Knowledge of analog circuit design and familiarity with digital schematic
capture tools.

2. Strategies for encouraging and supporting contributions and ideas from all team members:
Discuss all ideas from all team members; don’t dismiss any ideas without exploring them
first.

84

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)
Be upfront in communication. Be willing to bring something up to the group if it is
bothering you. If truly uncomfortable with that, reach out to Professors or Advisors for
help.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
Be prepared for the tapeout date of April 11, 2025. This involves having a working design that has
been thoroughly simulated both in the digital tools and possibly on an FPGA to verify circuit
behavior.

2. Strategies for planning and assigning individual and teamwork:
When tasks/problems arise, discuss as a group how to distribute the workload, with
a clear understanding of who is taking on what responsibility

3. Strategies for keeping on task:
Assisting each other when problems arise, working in group settings with each
other on the project, keeping each other accountable and on task

Consequences for Not Adhering to Team Contract
1. How will you handle infractions of any of the obligations of this team contract?

The team discusses with the infractor their wrongdoings, and if no change occurs
afterward, meet with advisors to discuss what further actions to take.

2. What will your team do if the infractions continue?
 Meet with the course/team advisors and discuss what further actions to take. If
necessary, 4910 instructors will be involved if project advisors are unable to resolve the
issue.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) ______________Travis Jakl__________________________ DATE ______9/13/24______
2) ______________Sam Burns__________________________ DATE ______9/13/24______
3) ______________Olivia Price__________________________DATE ______9/13/24______
4) ______________Noah Mack__________________________ DATE ______9/13/24______

	ASIC Design of ReRAM-based AI Accelerators
	Executive Summary
	Learning Summary

	Development Standards & Practices Used
	Summary of Requirements
	Updated Summary of Requirements
	Applicable Courses from Iowa State University Curriculum
	New Skills/Knowledge acquired that was not taught in courses
	
	List of Figures/Tables/Definitions

	Figures
	Tables
	Definitions
	1.Introduction

	1.1 Problem Statement
	1.2 Users and User Needs
	
	1.3 What is ReRAM?
	2.Requirements, Constraints, and Standards

	2.1 Requirements
	2.2 Constraints
	2.3 IEEE Standards
	2.4 Applicable Courses From ISU Curriculum
	3.Project Plan

	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	3.4 Project Timeline/Schedule
	3.5 Risks and Risk Management/Mitigation
	3.5.1 Updated Risks and Risk Management/Mitigation Post Efabless-Shutdown

	3.6 Personnel Effort Requirements
	3.7 Other Resource Requirements
	4.Design

	4.1 Broader Context
	4.1.1 Broader context
	4.1.2 Prior Work/Solutions
	
	
	4.1.3 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-off

	4.3 Proposed Design
	4.3.1 Overview
	4.3.2 Detailed Design and Visuals
	
	
	
	
	4.3.3 Functionality
	4.3.4 Areas of Concern and Development

	4.4 Technology Considerations
	5.Testing

	5.1 Unit Testing
	5.2 Interface Testing
	5.3 Integration Testing
	5.4 System Testing
	5.5 Regression Testing
	5.6 Acceptance Testing
	5.7 User Testing
	5.8 Security Testing
	5.9 Results
	6. Implementation

	6.1 Design Analysis
	7. Ethics and Professional Responsibilities

	7.1 Areas of Professional Responsibility/Codes of Ethics
	7.2 Four Principles
	7.3 Virtues
	7.4 Ethics and Virtue Changes Throughout the Project
	8. Closing Material

	8.1 Conclusions
	8.2 Value Provided
	8.3 Next Steps
	9. References
	
	10. Appendices

	10.1 Operation Manual
	10.2 Alternative/Initial Versions of Design
	Due to the nature of our project, our design was pretty much set in stone from the beginning. We had two previous team’s work to go off of, so we had a good idea of what we needed to do. Our job was integrating all of the designs onto one chip. Rather than revising our design, most of our time was spent getting familiar with tools and verifying/improving work from the previous teams.
	10.3 Other Considerations if applicable
	ASIC Design Troubleshooting Guide
	Table of Contents
	General Setup Issues
	Issue: Incorrect SPICE File Generation in Xschem

	Magic Tool Issues
	Issue: Incorrect Magic Configuration File
	Issue: Wiring VDD and VSS Pins in Project Wrapper

	Xschem Issues
	Issue: Symbol Type Mismatch (Primitive vs. Subcircuit)

	Klayout DRC Issues
	Issue: Precheck DRC Failure

	LVS Check Issues
	Issue: LVS Execution in Netgen
	Issue: Precheck LVS Failure Despite Local LVS Passing

	
	
	Precheck Failures
	Issue: Consistency Error in SPICE File
	Issue: GPIO Defines Failure
	Issue: Missing SPICE File in Xschem
	Issue: README and Documentation Errors

	ReRAM Integration Issues
	Issue: Installing ReRAM Source Files
	
	
	
	Issue: LVS and Precheck with ReRAM

	Additional Notes

	10.4 Code
	10.5 Team Contract
	10.5.1 Team Members
	10.5.2 Required Skill Set For Your Project
	10.5.3 Skill Sets Covered by the Team
	10.5.4 Project Management Style Adopted By The Team
	10.5.5 Initial Project Management Roles
	10.5.6 Team Contract
	

