
SDMay25-19: ASIC design for 
Compute-In-Memory Research 

Vehicle

By: Noah Mack, Olivia Price, Travis Jakl, Sam Burns
Clients/Advisors: Dr. Henry Duwe and Dr. Cheng Wang



Problem Statement
- Matrix-vector multiplication (MVM) 

is crucial in machine learning 
computations

- Data transfer between memory and 
CPU creates bottlenecking

- What can be done about this?

2
For more information, see section 1.1 of the design document

Source [1]

Data Movement



Compute-In-Memory
- MVM is performed within memory 

system
- Works via multiply and 

accumulate process

- Alleviates bottleneck between 
memory and CPU

- Many technologies for this system
- Resistive Memory (ReRAM) is 

the one our clients are 
interested in because of 
density and efficiency

3



What is ReRAM?
- Non-volatile memory technology 
- High and low conductance states controlled by filament 

formation
- Can perform MAC operations (Ohm’s Law) by taking 

advantage of the two states

4
For more information about ReRAM see section 1.3 on the design document

=1 =0



Our Project
- Design and fabricate a test chip implementing four ReRAM-based 

compute-in-memory architectures (Research Test Vehicle)
- Characterize system performance across architectures and components
- Use Skywater 130nm process and Efabless tools for fabrication and 

tape-out

5



Users
Primary Users:

- ISU ECpE faculty and research teams (graduate and undergraduate).

Secondary Users:

- ChipForge: An Iowa State University club
- Students in CPRE 4870/5870, EE 5260

Tertiary Users (Public):

- Public (which will further research in the field and help the field evolve)

6
For more information, see section 1.2 of the design document



A prior efabless project being used by Chip Forge



- Component circuits are individually characterizable 
and accessible through external analog I/O

- Four different ReRAM compute crossbar architectures
- Different configurations of source, bit, word lines
- Different peripheral circuitry
- True crossbar vs. 1T1R grid

- Uncertainty evaluation for implemented architectures
- Crossbar noise
- ADC noise
- Design for worst case crossbar noise within one 

ADC step
8

For more information, see section 2.1 of the design document

Requirements



Requirements Cont.
- Bring-up Documentation and code for validation and debug

- Characterizing the component circuitry via individual test 
benches.

- FORMing the ReRAM cells
- C Code for the MCU to interface with the ReRAM that enables 

testing and demonstrates that the ReRAM can compute an MVM 
within an epsilon tolerance.

- Refine and update Chip Forge documentation

9
For more information, see section 2.1 of the design document



Design Strategy
1. Gain familiarity with open source tools
2. Test components from previous teams 

and fix where needed
3. Implement our own unique 

architectures
4. Create top level schematic with ability 

to select between different 
architectures and component circuitry

5. Write C code and documentation



Project Timeline

For more information, see section 3.4 of the design document



Fall: Goals and Challenges
- Goals:

- Install toolflow
- Learn basics about each aspect of mixed-signal toolflow
- Understand function and simulation of ReRAM
- Familiarize ourselves with past teams’ work to inform our own 

design decisions

Gtk analog waveform viewer



Fall: Testing and Results
- Learned toolflow by taking an 

inverter all the way through 
precheck

- Started testing previous teams 
designs 

Figure 5.7: Resulting waveforms from 4-to-1 
multiplexer testbench from team sddec23-08

For more information, see section 5.8 of the design document



Fall: Testing and Results Cont.
- Able to characterize ReRAM through simulation and reading skywater 

documentation

For more information, see section 5.8 of the design document



Project Timeline

For more information, see section 3.4 of the design document



Spring: Goals and Challenges
- Create a top level design with 4 total architectures and component testbench
- Designs pass local precheck and hosted checks before April 21st to meet 

fabrication deadline
- Write bring up code and documentation for end users to begin testing our 

chip



sddec23_08

sddec24_13

Sdmay25_19
Architecture 1

Sdmay25_19
Architecture 2



Spring: Work and Results Cont.
- Finished layout of one of our 

architectures, and layouts of all 
relevant subcomponents



Spring: Work and Results Cont.
- Successfully got components through precheck and tapeout-check on 

efabless servers. 



Spring: Work and Results Cont.
- Bring up code for testing architectures and characterizing components
- Provide API with read/write functionality for logic analyzer pins and pre 

defined pin names



Risks
- Past team’s design does not pass functional tests or pre-check (1)

- Risk 40%
- At least one of the new designs does not satisfy the requirements (2)

- Risk 15%
- Integrated top-level project wrapper design fails functional tests or pre-check (3)

- Risk 55% 
- Flicker noise is more impactful on the Skywater process than expected (4)

- Risk 15%



Mitigation
- Utilize efabless Slack community for tool related issues (a)
- Use distinct designs and create component testbench (b)
- Characterize all components from past teams before using in design (c)
- Resolve any issues with simulation or layout with individual components (d)
- Make use of paid tech-support from Efabless for Tapeout related issues (e)



Efabless Shutdown
● Shut down in early March, 2025
● Lost access to paid support from Efabless team
● Open-source slack community shut down as well
● Issues with ReRAM SPICE model would go unfixed
● Continue project as planned

Source [6]



Next Steps
- Pursue the design through another similar company:

- ChipFoundry.io
- Tiny Tapeout
- Etc.

- Use the designs as an educational tool for Chip Forge Members

Source [7]



Learning and Value Provided
- Gained in-depth understanding of tapeout process
- Developed an understanding of hierarchical analog design 
- Laid out and tested our unique crossbar architecture
- Documentation can provide an example of the design process for Chip Forge 

members to use in the future
- Analog documentation
- Mixed signal integration process



Conclusions
- Able to deliver:

- Two unique architectures
- Layout of our first unique architecture
- A component testbench for cell characterization 
- A top level design that incorporates all 4 compute-in-memory architectures
- Bringup code that would allow users to test and characterize our design

- Gained valuable insight into design of a hierarchical analog system with 
mixed signal components

- Our documentation will be a useful reference for future Chip Forge Members 
pursuing an analog design 



Image Sources

27

[1] https://www.linkedin.com/pulse/memory-bottleneck-ali-farahany/

[2] https://skywater-pdk.readthedocs.io/en/main/

[3] https://efabless.com/

[4] https://pubs.rsc.org/en/content/articlehtml/2019/fd/c8fd00106e

[5] https://link.springer.com/article/10.1186/s11671-020-03299-9

[6] https://efabless.com/notice 

[7] https://chipfoundry.io/ 

https://www.linkedin.com/pulse/memory-bottleneck-ali-farahany/
https://skywater-pdk.readthedocs.io/en/main/
https://efabless.com/
https://pubs.rsc.org/en/content/articlehtml/2019/fd/c8fd00106e
https://link.springer.com/article/10.1186/s11671-020-03299-9
https://efabless.com/notice
https://chipfoundry.io/

