
ASIC ReRAM Compute
Test Chip

By: Noah Mack, Olivia Price, Travis Jakl, Sam Burns

Team sdmay25-19

1

Clients/Advisors: Dr. Henry Duwe and Dr. Cheng Wang

Problem Statement
- AI is growing in demand, and right now

it's an energy intensive process
- Matrix-vector multiplication (MVM) is

crucial in machine learning
- Data transfer between memory and CPU

creates bottlenecking
- What can be done about this?

2For more information, see section 1.1 of the design document

Source [1]

Compute-In-Memory
- MVM is performed within memory

system

- Alleviates bottleneck between
memory and CPU

- Works via multiply and accumulate
process

- Many technologies for this system
- Resistive Memory (ReRAM)

3

What is ReRAM?
- Non-volatile memory technology, that is presently used for storing

memory
- Filament formation controls current flow
- High and low conductance states
- By abusing the ReRAM we can allow for analog computation

4For more information about ReRAM see section 1.3 on the design document

Source
[4]

Source [16]

Noise

- Since we are abusing ReRAM, there will be
a lot of noise

- Other components in the design that will
cause noise in the designs include:

- ADC (differential nonlinearity noise)
- Bitline or word line
- Transistor (minimal)
- TIA

- Researchers need to better understand the
characterization of noise

5
Source [17]

Our Solution
- Design a test chip with four unique ReRAM-based

compute-in-memory architectures to allow us to understand how
the noise will affect circuitry.

- Use Skywater 130nm process and Efabless tools for fabrication
and tape-out

6
Source [2] Source [3]

Users
Primary Users:

- ISU ECpE faculty and research teams (graduate and undergraduate).

Secondary Users:

- ChipForge: An Iowa State University club that started this semester
- Students in CPRE 4870/5870, EE 5260

Tertiary Users (Public):

- Public (which will further research in the field and help the field evolve)

7For more information, see section 1.2 of the design document

Requirements

8

- Four different ReRAM compute crossbar architectures
- Different configurations of source, bit, word lines
- Different peripheral circuitry
- True crossbar vs. 1T1R grid

- Component circuits are individually characterizable and accessible
through external analog I/O

- Uncertainty evaluation for implemented architectures
- Crossbar noise
- ADC noise
- Design for worst case crossbar noise within one ADC step

9For more information, see section 2.1 of the design document

Requirements

Requirements
- Bring-up Documentation and code for validation and debug

- Characterizing the component circuitry via individual test
benches.

- FORMing the ReRAM cells
- C Code for the MCU to interface with the ReRAM that enables

testing and demonstrates that the ReRAM can compute an MVM
within an epsilon tolerance.

10For more information, see section 2.1 of the design document

Designs

11

Top
Level
Design

12

Team sddec23-08
- Pioneered the tools used in this project
- Provided tool documentation
- ReRAM Architecture

- One bit sample & hold ADC
- DAC
- TIA
- Read from Source Line

13Source [5]

Team sddec24-13
- Added to tool documentation
- ReRAM Architecture

- Four bit flash ADC
- DAC
- TIA
- Strong Arm Comparator
- Read from Source Line

14Source [6]

Our Team sdmay25-19
- New Architecture 1

- Parallelize the source
and bit lines

- 4-bit ADC
- Read from source line
- Reduce noise on word

lines

15For more information, see section 6 on the design document

Source [7]

i

vv
v

i

v

Our Team sdmay25-19
- New Architecture 2

- True crossbar (no
transistors)

- 1-bit ADCs
- Increases density
- More susceptible to noise

16For more information, see section 6 on the design document

Risks
- Taped-out chip does not perform as expected

- Risk: 65%
- Past team’s design does not pass pre-check

- Risk: 100%
- Integrated top-level wrapper design fails pre-check

- Risk: 55%
- Flicker noise is more impactful on the Skywater process than

expected
- Risk: 15%

17For more information, see section 3.5 on the design document

Risk Mitigation
- Dedicate time towards verifying and adapting past teams

architectures
- Pre-layout & post-layout simulation
- Pre-check

- Perform thorough background research to inform design decisions
- Create testbenches and detailed simulations

- Follow proper layout practices for a space efficient designs
- Increasing clock speed into the MHz region decreases flicker noise
- Reach tape-out readiness early

- Talk with eFabless if necessary
18For more information, see section 3.5 on the design document

Resources/Tools

19For more information, see section 3.7 on the design document

- Netgen

GTKWave

Source [8]
Source [9] Source [10]

Source [11]

Testing

20

Unit Testing Workflow

21For more information, see section 5 on the design document

1. Create schematic testbench using XSchem

2. Simulate schematic using Ngspice

3. Create layout schematic using Magic

4. Extract SPICE netlist from layout

5. Simulate layout netlist using Ngspice

6. Perform LVS check using Netgen

Other Testing Strategies

22For more information, see section 5 on the design document

- Integration

- Regression Testing

- Acceptance Testing
- Complete by April 21st

Source [12]

Source [13]

Source [14]

Bring-up Testing

23

- Provide testing strategies in bring-up documentation

- Properly form ReRAM cells

- Verify peripheral circuitry function

- Testing practices for each architecture

Source [15]

Results
- Testing work of team sddec23-08

- Many components work
- Some need updating

- Same process will occur with team
sddec24-13 work

24For more information, see section 5.8 on the design document

Figure 5.5: Resulting waveforms from buffer testbench from team sddec23-08

Figure 5.7: Resulting waveforms from 4-to-1
multiplexer testbench from team sddec23-08

Results
- We have also tested a 1T1R

cell (pre-layout sim)
- Perform Set and Reset

Operations

25

Figure 5.10: Waveforms from our 1T1R testbench

For more information, see section 5.8 on the design document

Results

26

First Semester Timeline

27
For more information, see section 3 on the design document

Second Semester

28
For more information, see section 3 on the design document

Conclusions
- Familiarize ourselves with analog toolflow
- Tested sddec23-08 components

- Identified working & faulty components
- Found that design does not pass pre-check

- Created own testbenches for 1T1R cell
- Device operates in triode region
- Demonstrates SET and RESET operations

- Planned two unique ReRAM architectures
- Parallelize bit and source lines in 1T1R grid
- True crossbar

29

Questions?
30

Image Sources

31

[1] https://www.linkedin.com/pulse/memory-bottleneck-ali-farahany/

[2] https://skywater-pdk.readthedocs.io/en/main/

[3] https://efabless.com/

[4] https://pubs.rsc.org/en/content/articlehtml/2019/fd/c8fd00106e

[5] https://sddec23-08.sd.ece.iastate.edu/final_presentation.pdf

[6] https://sddec24-13.sd.ece.iastate.edu/SDDEC24_13_DESIGN_DOCUMENT%20(2).pdf

[7] C. Xu et al., "Overcoming the challenges of crossbar resistive memory architectures," 2015 IEEE 21st International Symposium on
High Performance Computer Architecture(HPCA), Burlingame, CA, USA, 2015, pp. 476-488, doi: 10.1109/HPCA.2015.7056056.

[8] https://marketplace.visualstudio.com/items?itemName=barakh.vscode-
xschem-viewer

https://www.linkedin.com/pulse/memory-bottleneck-ali-farahany/
https://skywater-pdk.readthedocs.io/en/main/
https://efabless.com/
https://pubs.rsc.org/en/content/articlehtml/2019/fd/c8fd00106e
https://sddec23-08.sd.ece.iastate.edu/final_presentation.pdf
https://sddec24-13.sd.ece.iastate.edu/SDDEC24_13_DESIGN_DOCUMENT%20(2).pdf
https://marketplace.visualstudio.com/items?itemName=barakh.vscode-xschem-viewer
https://marketplace.visualstudio.com/items?itemName=barakh.vscode-xschem-viewer

Image Sources

32

 [9] http://opencircuitdesign.com/magic/

[10] https://commons.wikimedia.org/wiki/File:Gtkwave_256x256x32.png

[11] https://1000logos.net/slack-logo/

[12] https://www.dreamstime.com/photos-images/adding-puzzle-pieces.html

[13] https://www.vectorstock.com/royalty-free-vector/puzzle-pieces-together-
vector-14398401

[14] https://www.vectorstock.com/royalty-free-vector/colorful-puzzle-vector-6821228

[15] https://info.efabless.com/chipignite-v2

http://opencircuitdesign.com/magic/
https://commons.wikimedia.org/wiki/File:Gtkwave_256x256x32.png
https://1000logos.net/slack-logo/
https://www.dreamstime.com/photos-images/adding-puzzle-pieces.html
https://www.vectorstock.com/royalty-free-vector/puzzle-pieces-together-vector-14398401
https://www.vectorstock.com/royalty-free-vector/puzzle-pieces-together-vector-14398401
https://www.vectorstock.com/royalty-free-vector/colorful-puzzle-vector-6821228
https://info.efabless.com/chipignite-v2

Image Sources

[16] https://link.springer.com/article/10.1186/s11671-020-03299-9

[17]
https://www.researchgate.net/figure/Resistive-random-access-memory-ReRAM-cr
ossbar-structure-with-bitlines-BLs-and_fig2_360786529

33

https://link.springer.com/article/10.1186/s11671-020-03299-9
https://www.researchgate.net/figure/Resistive-random-access-memory-ReRAM-crossbar-structure-with-bitlines-BLs-and_fig2_360786529
https://www.researchgate.net/figure/Resistive-random-access-memory-ReRAM-crossbar-structure-with-bitlines-BLs-and_fig2_360786529

